haive.core.models.vectorstore

Quick Links

Overview

This module provides comprehensive abstractions and implementations for working with vector stores in the Haive framework. Vector stores are specialized databases optimized for storing and retrieving high-dimensional vectors, typically used for similarity search in RAG (Retrieval-Augmented Generation) applications.

Note

Vector stores enable efficient semantic search by storing document embeddings and providing fast similarity-based retrieval. They are essential components for building RAG systems, recommendation engines, and other applications that require similarity search over large document collections.

Supported Providers

Open Source
  • Chroma - Local and server modes

  • FAISS - Facebook AI Similarity Search

  • Weaviate - Vector search engine

  • Qdrant - Similarity search engine

  • Milvus - Distributed vector database

Cloud Services
  • Pinecone - Managed vector database

  • Supabase - PostgreSQL + pgvector

  • MongoDB Atlas - Vector search

  • OpenSearch - Elasticsearch-based

  • Redis - Vector search capabilities

Specialized
  • LanceDB - Serverless vector DB

  • Marqo - Tensor search engine

  • Zilliz - Cloud-native Milvus

Quick Start

from haive.core.models.vectorstore import VectorStoreConfig, VectorStoreProvider

# Configure a local vector store
config = VectorStoreConfig(
    provider=VectorStoreProvider.Chroma,
    collection_name="documents",
    persist_directory="./chroma_db"
)

# Create and use the vector store
vectorstore = config.instantiate()
vectorstore.add_texts(["Document content"], metadatas=[{"source": "doc1"}])
results = vectorstore.similarity_search("query text", k=5)
# Configure for production with Pinecone
config = VectorStoreConfig(
    provider=VectorStoreProvider.Pinecone,
    api_key_env_var="PINECONE_API_KEY",
    environment="us-west1-gcp",
    index_name="production-index"
)

# Create with custom embeddings
from haive.core.models.embeddings import OpenAIEmbeddingConfig

embedding_config = OpenAIEmbeddingConfig(model="text-embedding-3-small")
config.embedding_model = embedding_config
from haive.core.models.vectorstore import VectorStoreConfig
from langchain_core.documents import Document

# Create documents
docs = [
    Document(page_content="Content 1", metadata={"source": "file1.txt"}),
    Document(page_content="Content 2", metadata={"source": "file2.txt"})
]

# Create vector store from documents
vs_config = VectorStoreConfig.create_vs_config_from_documents(
    documents=docs,
    vector_store_provider=VectorStoreProvider.Chroma
)

API Reference

Configuration Classes

VectorStoreConfig(*[, name, ...])

Configuration model for a vector store.

VectorStoreProvider(*values)

Enumeration of supported vector store providers.

class haive.core.models.vectorstore.VectorStoreConfig(*, name=None, embedding_model=HuggingFaceEmbeddingConfig(provider=<EmbeddingProvider.HUGGINGFACE: 'huggingface'>, model='sentence-transformers/all-mpnet-base-v2', api_key=SecretStr(''), model_kwargs={'device': 'cpu'}, encode_kwargs={}, query_encode_kwargs={}, multi_process=False, cache_folder='/home/will/Projects/haive/resources/embeddings_cache', show_progress=False, use_cache=True), vector_store_provider=VectorStoreProvider.FAISS, vector_store_path='vector_store', vector_store_kwargs=<factory>, documents=<factory>, docstore_path='docstore')[source]

Bases: BaseModel

Configuration model for a vector store.

Configuration Examples

Local Vector Store:

config = VectorStoreConfig(
    provider=VectorStoreProvider.Chroma,
    persist_directory="./local_db",
    collection_name="my_documents"
)

Cloud Vector Store with Authentication:

config = VectorStoreConfig(
    provider=VectorStoreProvider.Pinecone,
    api_key_env_var="PINECONE_API_KEY",
    environment="us-west1-gcp",
    index_name="production",
    vector_store_kwargs={
        "metric": "cosine",
        "dimension": 1536
    }
)
Parameters:
classmethod __get_pydantic_json_schema__(core_schema, handler, /)

Hook into generating the model’s JSON schema.

Parameters:
  • core_schema (CoreSchema) – A pydantic-core CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({‘type’: ‘nullable’, ‘schema’: current_schema}), or just call the handler with the original schema.

  • handler (GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise a pydantic.errors.PydanticInvalidForJsonSchema if JSON schema generation fails. Since this gets called by BaseModel.model_json_schema you can override the schema_generator argument to that function to change JSON schema generation globally for a type.

Returns:

A JSON schema, as a Python object.

Return type:

JsonSchemaValue

classmethod __pydantic_init_subclass__(**kwargs)

This is intended to behave just like __init_subclass__, but is called by ModelMetaclass only after the class is actually fully initialized. In particular, attributes like model_fields will be present when this is called.

This is necessary because __init_subclass__ will always be called by type.__new__, and it would require a prohibitively large refactor to the ModelMetaclass to ensure that type.__new__ was called in such a manner that the class would already be sufficiently initialized.

This will receive the same kwargs that would be passed to the standard __init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.

Parameters:

**kwargs (Any) – Any keyword arguments passed to the class definition that aren’t used internally by pydantic.

Return type:

None

classmethod construct(_fields_set=None, **values)
Parameters:
Return type:

Self

classmethod create_vs_config_from_documents(documents, embedding_model=HuggingFaceEmbeddingConfig(provider=<EmbeddingProvider.HUGGINGFACE: 'huggingface'>, model='sentence-transformers/all-mpnet-base-v2', api_key=SecretStr(''), model_kwargs={'device': 'cpu'}, encode_kwargs={}, query_encode_kwargs={}, multi_process=False, cache_folder='/home/will/Projects/haive/resources/embeddings_cache', show_progress=False, use_cache=True), **kwargs)[source]

Create a VectorStoreConfig from a list of documents.

Parameters:
Return type:

VectorStoreConfig

classmethod create_vs_from_documents(documents, embedding_model=HuggingFaceEmbeddingConfig(provider=<EmbeddingProvider.HUGGINGFACE: 'huggingface'>, model='sentence-transformers/all-mpnet-base-v2', api_key=SecretStr(''), model_kwargs={'device': 'cpu'}, encode_kwargs={}, query_encode_kwargs={}, multi_process=False, cache_folder='/home/will/Projects/haive/resources/embeddings_cache', show_progress=False, use_cache=True), **kwargs)[source]

Create a VectorStore from a list of documents.

Parameters:
Return type:

VectorStoreConfig

classmethod from_orm(obj)
Parameters:

obj (Any)

Return type:

Self

classmethod model_construct(_fields_set=None, **values)

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Parameters:
  • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

  • values (Any) – Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

Return type:

Self

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')

Generates a JSON schema for a model class.

Parameters:
  • by_alias (bool) – Whether to use attribute aliases or not.

  • ref_template (str) – The reference template.

  • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications

  • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

Return type:

dict[str, Any]

classmethod model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameters:

params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError – Raised when trying to generate concrete names for non-generic models.

Return type:

str

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameters:
  • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.

  • raise_errors (bool) – Whether to raise errors, defaults to True.

  • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.

  • _types_namespace (MappingNamespace | None) – The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

Return type:

bool | None

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)

Validate a pydantic model instance.

Parameters:
  • obj (Any) – The object to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • from_attributes (bool | None) – Whether to extract data from object attributes.

  • context (Any | None) – Additional context to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError – If the object could not be validated.

Returns:

The validated model instance.

Return type:

Self

classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Parameters:
  • json_data (str | bytes | bytearray) – The JSON data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError – If json_data is not a JSON string or the object could not be validated.

Return type:

Self

classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)

Validate the given object with string data against the Pydantic model.

Parameters:
  • obj (Any) – The object containing string data to validate.

  • strict (bool | None) – Whether to enforce types strictly.

  • context (Any | None) – Extra variables to pass to the validator.

  • by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.

  • by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Return type:

Self

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)
Parameters:
  • path (str | Path)

  • content_type (str | None)

  • encoding (str)

  • proto (DeprecatedParseProtocol | None)

  • allow_pickle (bool)

Return type:

Self

classmethod parse_obj(obj)
Parameters:

obj (Any)

Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)
Parameters:
  • b (str | bytes)

  • content_type (str | None)

  • encoding (str)

  • proto (DeprecatedParseProtocol | None)

  • allow_pickle (bool)

Return type:

Self

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')
Parameters:
  • by_alias (bool)

  • ref_template (str)

Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)
Parameters:
  • by_alias (bool)

  • ref_template (str)

  • dumps_kwargs (Any)

Return type:

str

classmethod update_forward_refs(**localns)
Parameters:

localns (Any)

Return type:

None

classmethod validate(value)
Parameters:

value (Any)

Return type:

Self

__copy__()

Returns a shallow copy of the model.

Return type:

Self

__deepcopy__(memo=None)

Returns a deep copy of the model.

Parameters:

memo (dict[int, Any] | None)

Return type:

Self

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameters:

data (Any)

Return type:

None

__iter__()

So dict(model) works.

Return type:

Generator[tuple[str, Any], None, None]

__pretty__(fmt, **kwargs)

Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.

Parameters:
Return type:

Generator[Any, None, None]

__repr_name__()

Name of the instance’s class, used in __repr__.

Return type:

str

__repr_recursion__(object)

Returns the string representation of a recursive object.

Parameters:

object (Any)

Return type:

str

__rich_repr__()

Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.

Return type:

RichReprResult

add_document(document)[source]

Add a single document to the vector store config.

Parameters:

document (Document)

copy(*, include=None, exclude=None, update=None, deep=False)

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Parameters:
  • include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.

  • exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.

  • update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.

  • deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

Return type:

Self

create_retriever(async_mode=False)[source]

Create a retriever from the vector store.

Parameters:

async_mode (bool)

create_vectorstore(async_mode=False)[source]

Create a vector store instance from this configuration.

Parameters:

async_mode (bool)

dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)
Parameters:
Return type:

Dict[str, Any]

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)
Parameters:
Return type:

str

model_copy(*, update=None, deep=False)
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Parameters:
  • update (Mapping[str, Any] | None) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.

  • deep (bool) – Set to True to make a deep copy of the model.

Returns:

New model instance.

Return type:

Self

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameters:
  • mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

  • include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.

  • exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.

  • context (Any | None) – Additional context to pass to the serializer.

  • by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.

  • exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults (bool) – Whether to exclude fields that are set to their default value.

  • exclude_none (bool) – Whether to exclude fields that have a value of None.

  • round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

  • serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

Return type:

dict[str, Any]

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameters:
  • indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.

  • include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.

  • exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.

  • context (Any | None) – Additional context to pass to the serializer.

  • by_alias (bool | None) – Whether to serialize using field aliases.

  • exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.

  • exclude_defaults (bool) – Whether to exclude fields that are set to their default value.

  • exclude_none (bool) – Whether to exclude fields that have a value of None.

  • round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].

  • warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

  • fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

  • serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

Return type:

str

model_post_init(context, /)

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Parameters:

context (Any)

Return type:

None

docstore_path: str
documents: list[Document]
embedding_model: BaseEmbeddingConfig
model_computed_fields = {}
Return type:

dict[str, pydantic.fields.ComputedFieldInfo]

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

property model_extra: dict[str, Any] | None

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

Return type:

dict[str, Any] | None

model_fields = {'docstore_path': FieldInfo(annotation=str, required=False, default='docstore', description='Where to store raw and processed documents'), 'documents': FieldInfo(annotation=list[Document], required=False, default_factory=list, description='The raw documents to store'), 'embedding_model': FieldInfo(annotation=BaseEmbeddingConfig, required=False, default=HuggingFaceEmbeddingConfig(provider=<EmbeddingProvider.HUGGINGFACE: 'huggingface'>, model='sentence-transformers/all-mpnet-base-v2', api_key=SecretStr(''), model_kwargs={'device': 'cpu'}, encode_kwargs={}, query_encode_kwargs={}, multi_process=False, cache_folder='/home/will/Projects/haive/resources/embeddings_cache', show_progress=False, use_cache=True), description='The embedding model to use for the vector store'), 'name': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'vector_store_kwargs': FieldInfo(annotation=dict[str, Any], required=False, default_factory=dict, description='Optional kwargs for the vector store'), 'vector_store_path': FieldInfo(annotation=str, required=False, default='vector_store', description='The path to the vector store'), 'vector_store_provider': FieldInfo(annotation=VectorStoreProvider, required=False, default=<VectorStoreProvider.FAISS: 'FAISS'>, description='The type of vector store to use')}
Return type:

dict[str, pydantic.fields.FieldInfo]

property model_fields_set: set[str]

Returns the set of fields that have been explicitly set on this model instance.

Returns:

A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

Return type:

set[str]

name: str | None
vector_store_kwargs: dict[str, Any]
vector_store_path: str
vector_store_provider: VectorStoreProvider
class haive.core.models.vectorstore.VectorStoreProvider(*values)[source]

Bases: str, Enum

Enumeration of supported vector store providers.

Available Providers

Provider

Type

Best For

Chroma

Open Source

Local development, prototyping

Pinecone

Cloud Service

Production, managed infrastructure

FAISS

Local/Memory

High-performance similarity search

Weaviate

Open Source

GraphQL queries, hybrid search

Chroma = 'Chroma'
FAISS = 'FAISS'
InMemory = 'InMemory'
Milvus = 'Milvus'
Pinecone = 'Pinecone'
Qdrant = 'Qdrant'
Weaviate = 'Weaviate'
Zilliz = 'Zilliz'

Functions

haive.core.models.vectorstore.add_document(*args, **kwargs)[source]

Placeholder function.

Architecture

        graph LR
    A[Documents] --> B[Embeddings]
    B --> C[Vector Store]
    C --> D[Similarity Search]
    D --> E[Retrieved Documents]

    subgraph "Vector Store Types"
        F[Local/File-based]
        G[Cloud Services]
        H[In-Memory]
    end
    

Performance Considerations

Optimization Tips

  • Index Type: Different providers support different index types (HNSW, IVF, etc.)

  • Batch Operations: Use batch operations for better performance when adding many documents

  • Connection Pooling: Configured automatically for cloud providers

  • Caching: In-memory caching for frequently accessed embeddings

Warning

Large-scale deployments should consider:

  • Index size limitations

  • Query latency requirements

  • Cost per query/storage

  • Data persistence needs

Extended Examples

RAG Pipeline Example

Migration Between Providers

# Migrate from one provider to another
def migrate_vectorstore(source_config, target_config):
    """Migrate documents between vector stores."""
    # Extract from source
    source_vs = source_config.instantiate()
    docs = source_vs.similarity_search("", k=1000)  # Get all

    # Load into target
    target_vs = target_config.instantiate()
    target_vs.add_documents(docs)

    return target_vs

See Also