haive.core.engine.retriever.providers.PineconeHybridSearchRetrieverConfig¶

from typing import Any. Pinecone Hybrid Search Retriever implementation for the Haive framework.

This module provides a configuration class for the Pinecone Hybrid Search retriever, which combines vector similarity search with keyword search using Pinecone’s hybrid search capabilities.

The PineconeHybridSearchRetriever works by: 1. Connecting to a Pinecone index 2. Performing both vector and keyword search 3. Combining results using Pinecone’s hybrid scoring

This retriever is particularly useful when: - Using Pinecone as the vector database - Need both semantic and keyword search - Want Pinecone’s optimized hybrid search performance - Building applications that benefit from combined search approaches

The implementation integrates with LangChain’s PineconeHybridSearchRetriever while providing a consistent Haive configuration interface with secure API key management.

Classes¶

PineconeHybridSearchRetrieverConfig

Configuration for Pinecone Hybrid Search retriever in the Haive framework.

Module Contents¶

class haive.core.engine.retriever.providers.PineconeHybridSearchRetrieverConfig.PineconeHybridSearchRetrieverConfig[source]¶

Bases: haive.core.common.mixins.secure_config.SecureConfigMixin, haive.core.engine.retriever.retriever.BaseRetrieverConfig

Configuration for Pinecone Hybrid Search retriever in the Haive framework.

This retriever uses Pinecone’s hybrid search capabilities to combine vector similarity search with keyword search for better retrieval performance.

retriever_type¶

The type of retriever (always PINECONE).

Type:

RetrieverType

api_key¶

Pinecone API key (auto-resolved from PINECONE_API_KEY).

Type:

Optional[SecretStr]

index_name¶

Name of the Pinecone index to search.

Type:

str

environment¶

Pinecone environment (e.g., “us-east1-gcp”).

Type:

str

top_k¶

Number of documents to retrieve (default: 10).

Type:

int

alpha¶

Weight for vector vs sparse search (0.0 = sparse only, 1.0 = vector only).

Type:

float

Examples

>>> from haive.core.engine.retriever import PineconeHybridSearchRetrieverConfig
>>>
>>> # Create the pinecone hybrid search retriever config
>>> config = PineconeHybridSearchRetrieverConfig(
...     name="pinecone_hybrid_retriever",
...     index_name="my-hybrid-index",
...     environment="us-east1-gcp",
...     top_k=5,
...     alpha=0.5  # Equal weight to vector and sparse search
... )
>>>
>>> # Instantiate and use the retriever
>>> retriever = config.instantiate()
>>> docs = retriever.get_relevant_documents("machine learning algorithms")
get_input_fields()[source]¶

Return input field definitions for Pinecone Hybrid Search retriever.

Return type:

dict[str, tuple[type, Any]]

get_output_fields()[source]¶

Return output field definitions for Pinecone Hybrid Search retriever.

Return type:

dict[str, tuple[type, Any]]

instantiate()[source]¶

Create a Pinecone Hybrid Search retriever from this configuration.

Returns:

Instantiated retriever ready for hybrid search.

Return type:

PineconeHybridSearchRetriever

Raises:
  • ImportError – If required packages are not available.

  • ValueError – If API key or configuration is invalid.