haive.core.schema.stateยถ

๐ŸŒŠ State System - Dynamic AI State Evolution Engine

THE LIVING MEMORY OF INTELLIGENT SYSTEMS

Welcome to the State System - the revolutionary foundation that transforms static data models into dynamic, evolving memory structures for AI agents. This isnโ€™t just another state management library; itโ€™s a comprehensive state evolution platform that enables AI systems to dynamically adapt their memory structures as they learn and grow.

๐Ÿงฌ STATE EVOLUTION REVOLUTIONยถ

The State System represents a paradigm shift in how AI agents manage and evolve their internal state. Every state becomes a living, breathing data structure that can:

๐Ÿ”„ Self-Modifying Architecture: States that evolve their own structure based on discovered patterns โšก Real-time Adaptation: Dynamic field addition and type evolution without restarts ๐Ÿง  Intelligent Merging: Semantic-aware state combination with conflict resolution ๐Ÿ“Š Temporal Memory: Version history and time-travel debugging capabilities ๐ŸŽฏ Type-Safe Evolution: Guaranteed type safety even during dynamic schema changes

๐ŸŒŸ CORE INNOVATIONSยถ

1. Dynamic State Architecture ๐Ÿ—๏ธ

States that grow and evolve with your AI agents:

Examples

>>> from haive.core.schema.state import StateSchema, Field
>>>
>>> class AdaptiveAgentState(StateSchema):
>>> # Core fields that are always present
>>> messages: List[BaseMessage] = Field(default_factory=list)
>>> confidence: float = Field(default=0.0)
>>>
>>> # Fields that can be added dynamically
>>> __dynamic_fields__ = True
>>> __auto_evolve__ = True
>>>
>>> def discover_capability(self, capability: str, data: Any):
>>> """Dynamically add new state fields based on discovered capabilities."""
>>> if capability == "vision":
>>> self.add_field("visual_memory", List[Image], default=[])
>>> self.add_field("object_recognition", Dict[str, float], default={})
>>> elif capability == "planning":
>>> self.add_field("goal_stack", List[Goal], default=[])
>>> self.add_field("plan_history", List[Plan], default=[])
2. Intelligent State Merging ๐Ÿงฉ

Advanced merging strategies that understand your data:

>>> # Define semantic merge strategies
>>> class ConversationState(StateSchema):
>>> messages: List[BaseMessage] = Field(default_factory=list)
>>> knowledge: Dict[str, Any] = Field(default_factory=dict)
>>> user_preferences: Dict[str, Any] = Field(default_factory=dict)
>>>
>>> # Custom reducer functions for intelligent merging
>>> __reducer_fields__ = {
>>> "messages": preserve_chronological_order,
>>> "knowledge": semantic_knowledge_merge,
>>> "user_preferences": preference_conflict_resolution
>>> }
>>>
>>> # Automatic intelligent merging
>>> state1 = ConversationState(messages=[msg1, msg2])
>>> state2 = ConversationState(messages=[msg3, msg4])
>>> merged = state1.merge(state2)  # Intelligent chronological merge
3. Temporal State Management โฐ

Time-aware state with history and rollback capabilities:

>>> class TemporalState(StateSchema):
>>> __enable_history__ = True
>>> __snapshot_frequency__ = 10  # Snapshot every 10 updates
>>> __max_history_size__ = 100
>>>
>>> current_data: Dict[str, Any] = Field(default_factory=dict)
>>>
>>> def rollback_to(self, timestamp: datetime):
>>> """Rollback state to specific point in time."""
>>> return self.restore_snapshot(timestamp)
>>>
>>> def get_state_at(self, timestamp: datetime):
>>> """Get state at specific time without modifying current state."""
>>> return self.view_snapshot(timestamp)
>>>
>>> def analyze_evolution(self) -> StateEvolutionAnalysis:
>>> """Analyze how state has evolved over time."""
>>> return StateEvolutionAnalysis(self.history)
4. Multi-Agent State Coordination ๐Ÿค

Sophisticated state sharing and synchronization:

>>> class SharedState(StateSchema):
>>> # Global shared fields
>>> __shared_fields__ = ["global_knowledge", "conversation_history"]
>>>
>>> # Agent-specific private fields
>>> __private_fields__ = ["internal_thoughts", "private_memory"]
>>>
>>> # Coordination fields
>>> global_knowledge: KnowledgeGraph = Field(default_factory=KnowledgeGraph)
>>> conversation_history: List[Message] = Field(default_factory=list)
>>>
>>> # Private to each agent instance
>>> internal_thoughts: List[str] = Field(default_factory=list, private=True)
>>> private_memory: Dict[str, Any] = Field(default_factory=dict, private=True)
>>>
>>> def share_with_agent(self, agent_id: str) -> AgentStateView:
>>> """Create filtered view for specific agent."""
>>> return self.create_view(
>>> include=self.__shared_fields__,
>>> exclude=self.__private_fields__,
>>> agent_id=agent_id
>>> )

๐ŸŽฏ ADVANCED FEATURESยถ

Real-time Schema Evolution ๐Ÿ”ฎ

>>> # Schema that adapts to new patterns
>>> class LearningState(StateSchema):
>>> __learning_mode__ = True
>>> __pattern_detection__ = True
>>>
>>> def update(self, data: Dict[str, Any]):
>>> # Detect new patterns in incoming data
>>> new_patterns = self.detect_patterns(data)
>>>
>>> # Automatically evolve schema
>>> for pattern in new_patterns:
>>> if pattern.confidence > 0.8:
>>> self.add_computed_field(
>>> pattern.field_name,
>>> pattern.computation_logic,
>>> pattern.type_hint
>>> )
>>>
>>> # Apply update with evolved schema
>>> super().update(data)

State Validation Chains โœ…

>>> class ValidatedState(StateSchema):
>>> data: Dict[str, Any] = Field(default_factory=dict)
>>>
>>> @field_validator("data")
>>> @classmethod
>>> def validate_data_structure(cls, v):
>>> # Multi-level validation
>>> structural_validation(v)
>>> semantic_validation(v)
>>> consistency_validation(v)
>>> return v
>>>
>>> @model_validator(mode="after")
>>> def cross_field_validation(self):
>>> # Complex cross-field relationships
>>> if not self.validate_field_relationships():
>>> raise ValueError("Field relationships are inconsistent")
>>> return self

State Performance Analytics ๐Ÿ“Š

>>> class AnalyticsState(StateSchema):
>>> __enable_analytics__ = True
>>> __track_performance__ = True
>>>
>>> def get_performance_metrics(self) -> StateMetrics:
>>> return StateMetrics(
>>> memory_usage=self.calculate_memory_usage(),
>>> access_patterns=self.analyze_access_patterns(),
>>> evolution_rate=self.calculate_evolution_rate(),
>>> merge_efficiency=self.analyze_merge_performance()
>>> )
>>>
>>> def optimize_structure(self) -> OptimizationReport:
>>> """Automatically optimize state structure for performance."""
>>> return self.apply_optimizations([
>>> "field_reordering",
>>> "type_optimization",
>>> "compression",
>>> "lazy_loading"
>>> ])

๐Ÿ—๏ธ STATE COMPOSITION PATTERNSยถ

Hierarchical State Systems ๐Ÿ›๏ธ

>>> class HierarchicalState(StateSchema):
>>> # Root level data
>>> session_info: SessionInfo = Field(...)
>>>
>>> # Nested state components
>>> conversation_state: ConversationState = Field(default_factory=ConversationState)
>>> knowledge_state: KnowledgeState = Field(default_factory=KnowledgeState)
>>> planning_state: PlanningState = Field(default_factory=PlanningState)
>>>
>>> def get_component(self, component_name: str) -> StateSchema:
>>> """Access specific state component."""
>>> return getattr(self, f"{component_name}_state")
>>>
>>> def synchronize_components(self):
>>> """Ensure all components are synchronized."""
>>> shared_context = self.extract_shared_context()
>>> for component in self.get_all_components():
>>> component.update_from_shared_context(shared_context)

Plugin-based State Extensions ๐Ÿ”Œ

>>> class ExtensibleState(StateSchema):
>>> __enable_plugins__ = True
>>>
>>> # Core state
>>> base_data: Dict[str, Any] = Field(default_factory=dict)
>>>
>>> # Plugin registry
>>> plugins: Dict[str, StatePlugin] = Field(default_factory=dict)
>>>
>>> def load_plugin(self, plugin: StatePlugin):
>>> """Dynamically load state extension plugin."""
>>> plugin_fields = plugin.get_fields()
>>> plugin_methods = plugin.get_methods()
>>> plugin_validators = plugin.get_validators()
>>>
>>> # Extend state with plugin capabilities
>>> self.add_fields(plugin_fields)
>>> self.add_methods(plugin_methods)
>>> self.add_validators(plugin_validators)
>>>
>>> self.plugins[plugin.name] = plugin

๐Ÿ”’ ENTERPRISE FEATURESยถ

  • State Governance: Approval workflows for schema changes

  • Access Control: Field-level permissions and role-based access

  • Audit Logging: Complete state evolution history

  • Multi-tenancy: Isolated state spaces per tenant

  • Compliance: GDPR, HIPAA compliance with automatic PII handling

  • Backup & Recovery: Automated state backup and disaster recovery

๐ŸŽ“ BEST PRACTICESยถ

  1. Design for Evolution: Plan for schema changes from day one

  2. Use Typed Fields: Leverage Pydanticโ€™s type system for safety

  3. Implement Reducers: Define intelligent merge strategies for complex data

  4. Monitor Performance: Track state size and access patterns

  5. Version Your Schemas: Use migration strategies for breaking changes

  6. Test State Evolution: Validate schema changes with comprehensive tests

  7. Document State Contracts: Clear documentation for shared state fields

๐Ÿš€ GETTING STARTEDยถ

>>> from haive.core.schema.state import StateSchema, Field
>>> from typing import List, Dict, Any
>>>
>>> # 1. Define your evolving state
>>> class MyAgentState(StateSchema):
>>> # Essential fields
>>> messages: List[str] = Field(default_factory=list)
>>> context: Dict[str, Any] = Field(default_factory=dict)
>>>
>>> # Enable dynamic evolution
>>> __dynamic_fields__ = True
>>>
>>> # Define intelligent merging
>>> __reducer_fields__ = {
>>> "messages": lambda old, new: old + new,  # Append messages
>>> "context": lambda old, new: {**old, **new}  # Merge contexts
>>> }
>>>
>>> # 2. Use in your agent
>>> state = MyAgentState()
>>> state.messages.append("Hello!")
>>>
>>> # 3. Dynamic evolution
>>> state.discover_capability("memory", {"type": "semantic", "size": 1000})
>>>
>>> # 4. Intelligent merging
>>> other_state = MyAgentState(messages=["World!"])
>>> merged = state.merge(other_state)  # ["Hello!", "World!"]

โ€”

State System: Where Data Structures Become Living, Intelligent Memory ๐ŸŒŠ