haive.core.engine.retriever.providers.MilvusRetrieverConfigΒΆ
Milvus Retriever implementation for the Haive framework.
from typing import Any This module provides a configuration class for the Milvus retriever, which uses Milvus vector database for high-performance similarity search. Milvus is an open-source vector database built for scalable similarity search and AI applications with support for various indexing algorithms.
The MilvusRetriever works by: 1. Connecting to a Milvus server instance 2. Performing vector similarity search using various metrics 3. Supporting advanced indexing and search parameters 4. Providing high-performance retrieval for large-scale datasets
This retriever is particularly useful when: - Working with large-scale vector datasets (millions+ vectors) - Need high-performance similarity search - Require advanced indexing capabilities (IVF, HNSW, etc.) - Building production vector search applications - Need distributed and scalable vector storage
The implementation integrates with LangChainβs Milvus retriever while providing a consistent Haive configuration interface.
ClassesΒΆ
Configuration for Milvus retriever in the Haive framework. |
Module ContentsΒΆ
- class haive.core.engine.retriever.providers.MilvusRetrieverConfig.MilvusRetrieverConfig[source]ΒΆ
Bases:
haive.core.engine.retriever.retriever.BaseRetrieverConfig
Configuration for Milvus retriever in the Haive framework.
This retriever uses Milvus vector database to perform high-performance similarity search with support for various indexing and search parameters.
- retriever_typeΒΆ
The type of retriever (always MILVUS).
- Type:
- vectorstore_configΒΆ
Milvus vector store configuration.
- Type:
- search_paramsΒΆ
Milvus search parameters.
- Type:
Optional[Dict]
Examples
>>> from haive.core.engine.retriever import MilvusRetrieverConfig >>> from haive.core.engine.vectorstore.providers.MilvusVectorStoreConfig import MilvusVectorStoreConfig >>> >>> # Configure Milvus vector store >>> vectorstore_config = MilvusVectorStoreConfig( ... name="milvus_store", ... host="localhost", ... port=19530, ... collection_name="documents", ... index_params={"metric_type": "IP", "index_type": "IVF_FLAT"} ... ) >>> >>> # Create the Milvus retriever config >>> config = MilvusRetrieverConfig( ... name="milvus_retriever", ... vectorstore_config=vectorstore_config, ... k=10, ... search_params={"nprobe": 16}, ... consistency_level="Strong" ... ) >>> >>> # Instantiate and use the retriever >>> retriever = config.instantiate() >>> docs = retriever.get_relevant_documents("machine learning algorithms")
- instantiate()[source]ΒΆ
Create a Milvus retriever from this configuration.
- Returns:
Instantiated retriever ready for vector search.
- Return type:
MilvusRetriever
- Raises:
ImportError β If required packages are not available.
ValueError β If configuration is invalid.