haive.core.models.llm.providers.together¶
Together AI Provider Module.
This module implements the Together AI language model provider for the Haive framework, supporting a wide variety of open-source models through Together’s inference platform.
The provider handles API key management, model configuration, and safe imports of the langchain-together package dependencies.
Examples
Basic usage:
from haive.core.models.llm.providers.together import TogetherProvider
provider = TogetherProvider(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
temperature=0.7,
max_tokens=1000
)
llm = provider.instantiate()
With custom parameters:
provider = TogetherProvider(
model="meta-llama/Llama-2-70b-chat-hf",
temperature=0.1,
top_p=0.9,
top_k=50,
repetition_penalty=1.1
)
|
Together AI language model provider configuration. |
Classes¶
Together AI language model provider configuration. |
Module Contents¶
- class haive.core.models.llm.providers.together.TogetherProvider(/, **data)[source]¶
Bases:
haive.core.models.llm.providers.base.BaseLLMProvider
Together AI language model provider configuration.
This provider supports a wide variety of open-source models through Together’s inference platform, including Llama, Mixtral, CodeLlama, and many others.
- Parameters:
data (Any)
requests_per_second (float | None)
tokens_per_second (int | None)
tokens_per_minute (int | None)
max_retries (int)
retry_delay (float)
check_every_n_seconds (float | None)
burst_size (int | None)
provider (LLMProvider)
model (str | None)
name (str | None)
api_key (SecretStr)
cache_enabled (bool)
cache_ttl (int | None)
debug (bool)
temperature (float | None)
max_tokens (int | None)
top_p (float | None)
top_k (int | None)
repetition_penalty (float | None)
- provider¶
Always LLMProvider.TOGETHER_AI
- Type:
Examples
Mixtral model for reasoning:
provider = TogetherProvider( model="mistralai/Mixtral-8x7B-Instruct-v0.1", temperature=0.3, max_tokens=2000 )
Llama 2 for conversation:
provider = TogetherProvider( model="meta-llama/Llama-2-70b-chat-hf", temperature=0.7, top_p=0.9, repetition_penalty=1.1 )
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.