haive.core.engine.retriever.providers.ZepCloudRetrieverConfig¶
Zep Cloud Retriever implementation for the Haive framework.
from typing import Any This module provides a configuration class for the Zep Cloud retriever, which retrieves conversation history and memory from Zep’s cloud-hosted memory service. Zep Cloud provides managed long-term memory storage for conversational AI applications with enhanced features and reliability.
The ZepCloudRetriever works by: 1. Connecting to Zep Cloud service 2. Searching conversation history using semantic similarity 3. Retrieving relevant chat messages and context 4. Providing managed conversation memory
This retriever is particularly useful when: - Building conversational AI with cloud-hosted memory - Need reliable managed memory infrastructure - Want enhanced Zep features and performance - Building scalable chatbot applications - Need conversation history across sessions
The implementation integrates with LangChain’s ZepCloudRetriever while providing a consistent Haive configuration interface with secure API key management.
Classes¶
Configuration for Zep Cloud retriever in the Haive framework. |
Module Contents¶
- class haive.core.engine.retriever.providers.ZepCloudRetrieverConfig.ZepCloudRetrieverConfig[source]¶
Bases:
haive.core.common.mixins.secure_config.SecureConfigMixin
,haive.core.engine.retriever.retriever.BaseRetrieverConfig
Configuration for Zep Cloud retriever in the Haive framework.
This retriever searches conversational memory stored in Zep Cloud and returns relevant chat history and context for AI applications.
- retriever_type¶
The type of retriever (always ZEP_CLOUD).
- Type:
- api_key¶
Zep Cloud API key (auto-resolved from ZEP_API_KEY).
- Type:
Optional[SecretStr]
Examples
>>> from haive.core.engine.retriever import ZepCloudRetrieverConfig >>> >>> # Create the Zep Cloud retriever config >>> config = ZepCloudRetrieverConfig( ... name="zep_cloud_retriever", ... session_id="user-123-session", ... api_url="https://api.getzep.com", ... top_k=10, ... search_type="similarity" ... ) >>> >>> # Instantiate and use the retriever >>> retriever = config.instantiate() >>> docs = retriever.get_relevant_documents("what did we discuss about AI?") >>> >>> # Example for MMR search >>> mmr_config = ZepCloudRetrieverConfig( ... name="zep_cloud_mmr_retriever", ... session_id="user-123-session", ... api_url="https://api.getzep.com", ... search_type="mmr", ... mmr_lambda=0.7 ... )
- instantiate()[source]¶
Create a Zep Cloud retriever from this configuration.
- Returns:
Instantiated retriever ready for cloud memory search.
- Return type:
ZepCloudRetriever
- Raises:
ImportError – If required packages are not available.
ValueError – If API key or session configuration is invalid.