haive.core.models.llm.providers.groqΒΆ
Groq Provider Module.
This module implements the Groq language model provider for the Haive framework, supporting ultra-fast inference with Groqβs Language Processing Units (LPUs).
The provider handles API key management, model configuration, and safe imports of the langchain-groq package dependencies for high-speed LLM inference.
Examples
Basic usage:
from haive.core.models.llm.providers.groq import GroqProvider
provider = GroqProvider(
model="mixtral-8x7b-32768",
temperature=0.7,
max_tokens=1000
)
llm = provider.instantiate()
With streaming for real-time responses:
provider = GroqProvider(
model="llama2-70b-4096",
streaming=True,
temperature=0.1
)
|
Groq language model provider configuration. |
ClassesΒΆ
Groq language model provider configuration. |
Module ContentsΒΆ
- class haive.core.models.llm.providers.groq.GroqProvider(/, **data)[source]ΒΆ
Bases:
haive.core.models.llm.providers.base.BaseLLMProvider
Groq language model provider configuration.
This provider supports Groqβs high-speed LLM inference including Mixtral, Llama 2, and other optimized models running on Language Processing Units.
- Parameters:
data (Any)
requests_per_second (float | None)
tokens_per_second (int | None)
tokens_per_minute (int | None)
max_retries (int)
retry_delay (float)
check_every_n_seconds (float | None)
burst_size (int | None)
provider (LLMProvider)
model (str | None)
name (str | None)
api_key (SecretStr)
cache_enabled (bool)
cache_ttl (int | None)
debug (bool)
temperature (float | None)
max_tokens (int | None)
top_p (float | None)
stream (bool)
- providerΒΆ
Always LLMProvider.GROQ
- Type:
Examples
High-speed inference:
provider = GroqProvider( model="mixtral-8x7b-32768", temperature=0.7, max_tokens=2000 )
Streaming responses:
provider = GroqProvider( model="llama2-70b-4096", stream=True, temperature=0.1 )
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.