haive.core.schema.state ======================= .. py:module:: haive.core.schema.state .. autoapi-nested-parse:: 🌊 State System - Dynamic AI State Evolution Engine **THE LIVING MEMORY OF INTELLIGENT SYSTEMS** Welcome to the State System - the revolutionary foundation that transforms static data models into dynamic, evolving memory structures for AI agents. This isn't just another state management library; it's a comprehensive state evolution platform that enables AI systems to dynamically adapt their memory structures as they learn and grow. 🧬 STATE EVOLUTION REVOLUTION ----------------------------- The State System represents a paradigm shift in how AI agents manage and evolve their internal state. Every state becomes a **living, breathing data structure** that can: **🔄 Self-Modifying Architecture**: States that evolve their own structure based on discovered patterns **⚡ Real-time Adaptation**: Dynamic field addition and type evolution without restarts **🧠 Intelligent Merging**: Semantic-aware state combination with conflict resolution **📊 Temporal Memory**: Version history and time-travel debugging capabilities **🎯 Type-Safe Evolution**: Guaranteed type safety even during dynamic schema changes 🌟 CORE INNOVATIONS ------------------- **1. Dynamic State Architecture** 🏗️ States that grow and evolve with your AI agents: .. rubric:: Examples >>> from haive.core.schema.state import StateSchema, Field >>> >>> class AdaptiveAgentState(StateSchema): >>> # Core fields that are always present >>> messages: List[BaseMessage] = Field(default_factory=list) >>> confidence: float = Field(default=0.0) >>> >>> # Fields that can be added dynamically >>> __dynamic_fields__ = True >>> __auto_evolve__ = True >>> >>> def discover_capability(self, capability: str, data: Any): >>> """Dynamically add new state fields based on discovered capabilities.""" >>> if capability == "vision": >>> self.add_field("visual_memory", List[Image], default=[]) >>> self.add_field("object_recognition", Dict[str, float], default={}) >>> elif capability == "planning": >>> self.add_field("goal_stack", List[Goal], default=[]) >>> self.add_field("plan_history", List[Plan], default=[]) **2. Intelligent State Merging** 🧩 Advanced merging strategies that understand your data: >>> # Define semantic merge strategies >>> class ConversationState(StateSchema): >>> messages: List[BaseMessage] = Field(default_factory=list) >>> knowledge: Dict[str, Any] = Field(default_factory=dict) >>> user_preferences: Dict[str, Any] = Field(default_factory=dict) >>> >>> # Custom reducer functions for intelligent merging >>> __reducer_fields__ = { >>> "messages": preserve_chronological_order, >>> "knowledge": semantic_knowledge_merge, >>> "user_preferences": preference_conflict_resolution >>> } >>> >>> # Automatic intelligent merging >>> state1 = ConversationState(messages=[msg1, msg2]) >>> state2 = ConversationState(messages=[msg3, msg4]) >>> merged = state1.merge(state2) # Intelligent chronological merge **3. Temporal State Management** ⏰ Time-aware state with history and rollback capabilities: >>> class TemporalState(StateSchema): >>> __enable_history__ = True >>> __snapshot_frequency__ = 10 # Snapshot every 10 updates >>> __max_history_size__ = 100 >>> >>> current_data: Dict[str, Any] = Field(default_factory=dict) >>> >>> def rollback_to(self, timestamp: datetime): >>> """Rollback state to specific point in time.""" >>> return self.restore_snapshot(timestamp) >>> >>> def get_state_at(self, timestamp: datetime): >>> """Get state at specific time without modifying current state.""" >>> return self.view_snapshot(timestamp) >>> >>> def analyze_evolution(self) -> StateEvolutionAnalysis: >>> """Analyze how state has evolved over time.""" >>> return StateEvolutionAnalysis(self.history) **4. Multi-Agent State Coordination** 🤝 Sophisticated state sharing and synchronization: >>> class SharedState(StateSchema): >>> # Global shared fields >>> __shared_fields__ = ["global_knowledge", "conversation_history"] >>> >>> # Agent-specific private fields >>> __private_fields__ = ["internal_thoughts", "private_memory"] >>> >>> # Coordination fields >>> global_knowledge: KnowledgeGraph = Field(default_factory=KnowledgeGraph) >>> conversation_history: List[Message] = Field(default_factory=list) >>> >>> # Private to each agent instance >>> internal_thoughts: List[str] = Field(default_factory=list, private=True) >>> private_memory: Dict[str, Any] = Field(default_factory=dict, private=True) >>> >>> def share_with_agent(self, agent_id: str) -> AgentStateView: >>> """Create filtered view for specific agent.""" >>> return self.create_view( >>> include=self.__shared_fields__, >>> exclude=self.__private_fields__, >>> agent_id=agent_id >>> ) 🎯 ADVANCED FEATURES -------------------- **Real-time Schema Evolution** 🔮 >>> # Schema that adapts to new patterns >>> class LearningState(StateSchema): >>> __learning_mode__ = True >>> __pattern_detection__ = True >>> >>> def update(self, data: Dict[str, Any]): >>> # Detect new patterns in incoming data >>> new_patterns = self.detect_patterns(data) >>> >>> # Automatically evolve schema >>> for pattern in new_patterns: >>> if pattern.confidence > 0.8: >>> self.add_computed_field( >>> pattern.field_name, >>> pattern.computation_logic, >>> pattern.type_hint >>> ) >>> >>> # Apply update with evolved schema >>> super().update(data) **State Validation Chains** ✅ >>> class ValidatedState(StateSchema): >>> data: Dict[str, Any] = Field(default_factory=dict) >>> >>> @field_validator("data") >>> @classmethod >>> def validate_data_structure(cls, v): >>> # Multi-level validation >>> structural_validation(v) >>> semantic_validation(v) >>> consistency_validation(v) >>> return v >>> >>> @model_validator(mode="after") >>> def cross_field_validation(self): >>> # Complex cross-field relationships >>> if not self.validate_field_relationships(): >>> raise ValueError("Field relationships are inconsistent") >>> return self **State Performance Analytics** 📊 >>> class AnalyticsState(StateSchema): >>> __enable_analytics__ = True >>> __track_performance__ = True >>> >>> def get_performance_metrics(self) -> StateMetrics: >>> return StateMetrics( >>> memory_usage=self.calculate_memory_usage(), >>> access_patterns=self.analyze_access_patterns(), >>> evolution_rate=self.calculate_evolution_rate(), >>> merge_efficiency=self.analyze_merge_performance() >>> ) >>> >>> def optimize_structure(self) -> OptimizationReport: >>> """Automatically optimize state structure for performance.""" >>> return self.apply_optimizations([ >>> "field_reordering", >>> "type_optimization", >>> "compression", >>> "lazy_loading" >>> ]) 🏗️ STATE COMPOSITION PATTERNS ------------------------------ **Hierarchical State Systems** 🏛️ >>> class HierarchicalState(StateSchema): >>> # Root level data >>> session_info: SessionInfo = Field(...) >>> >>> # Nested state components >>> conversation_state: ConversationState = Field(default_factory=ConversationState) >>> knowledge_state: KnowledgeState = Field(default_factory=KnowledgeState) >>> planning_state: PlanningState = Field(default_factory=PlanningState) >>> >>> def get_component(self, component_name: str) -> StateSchema: >>> """Access specific state component.""" >>> return getattr(self, f"{component_name}_state") >>> >>> def synchronize_components(self): >>> """Ensure all components are synchronized.""" >>> shared_context = self.extract_shared_context() >>> for component in self.get_all_components(): >>> component.update_from_shared_context(shared_context) **Plugin-based State Extensions** 🔌 >>> class ExtensibleState(StateSchema): >>> __enable_plugins__ = True >>> >>> # Core state >>> base_data: Dict[str, Any] = Field(default_factory=dict) >>> >>> # Plugin registry >>> plugins: Dict[str, StatePlugin] = Field(default_factory=dict) >>> >>> def load_plugin(self, plugin: StatePlugin): >>> """Dynamically load state extension plugin.""" >>> plugin_fields = plugin.get_fields() >>> plugin_methods = plugin.get_methods() >>> plugin_validators = plugin.get_validators() >>> >>> # Extend state with plugin capabilities >>> self.add_fields(plugin_fields) >>> self.add_methods(plugin_methods) >>> self.add_validators(plugin_validators) >>> >>> self.plugins[plugin.name] = plugin 🔒 ENTERPRISE FEATURES ---------------------- - **State Governance**: Approval workflows for schema changes - **Access Control**: Field-level permissions and role-based access - **Audit Logging**: Complete state evolution history - **Multi-tenancy**: Isolated state spaces per tenant - **Compliance**: GDPR, HIPAA compliance with automatic PII handling - **Backup & Recovery**: Automated state backup and disaster recovery 🎓 BEST PRACTICES ----------------- 1. **Design for Evolution**: Plan for schema changes from day one 2. **Use Typed Fields**: Leverage Pydantic's type system for safety 3. **Implement Reducers**: Define intelligent merge strategies for complex data 4. **Monitor Performance**: Track state size and access patterns 5. **Version Your Schemas**: Use migration strategies for breaking changes 6. **Test State Evolution**: Validate schema changes with comprehensive tests 7. **Document State Contracts**: Clear documentation for shared state fields 🚀 GETTING STARTED ------------------ >>> from haive.core.schema.state import StateSchema, Field >>> from typing import List, Dict, Any >>> >>> # 1. Define your evolving state >>> class MyAgentState(StateSchema): >>> # Essential fields >>> messages: List[str] = Field(default_factory=list) >>> context: Dict[str, Any] = Field(default_factory=dict) >>> >>> # Enable dynamic evolution >>> __dynamic_fields__ = True >>> >>> # Define intelligent merging >>> __reducer_fields__ = { >>> "messages": lambda old, new: old + new, # Append messages >>> "context": lambda old, new: {**old, **new} # Merge contexts >>> } >>> >>> # 2. Use in your agent >>> state = MyAgentState() >>> state.messages.append("Hello!") >>> >>> # 3. Dynamic evolution >>> state.discover_capability("memory", {"type": "semantic", "size": 1000}) >>> >>> # 4. Intelligent merging >>> other_state = MyAgentState(messages=["World!"]) >>> merged = state.merge(other_state) # ["Hello!", "World!"] --- **State System: Where Data Structures Become Living, Intelligent Memory** 🌊