haive.core.models.vectorstore.VectorStoreConfigΒΆ
- class haive.core.models.vectorstore.VectorStoreConfig(*, name=None, embedding_model=HuggingFaceEmbeddingConfig(provider=<EmbeddingProvider.HUGGINGFACE: 'huggingface'>, model='sentence-transformers/all-mpnet-base-v2', api_key=SecretStr(''), model_kwargs={'device': 'cpu'}, encode_kwargs={}, query_encode_kwargs={}, multi_process=False, cache_folder='/home/will/Projects/haive/resources/embeddings_cache', show_progress=False, use_cache=True), vector_store_provider=VectorStoreProvider.FAISS, vector_store_path='vector_store', vector_store_kwargs=<factory>, documents=<factory>, docstore_path='docstore')[source]ΒΆ
Configuration model for a vector store.
- Parameters:
data (Any)
name (str | None)
embedding_model (BaseEmbeddingConfig)
vector_store_provider (VectorStoreProvider)
vector_store_path (str)
documents (list[Document])
docstore_path (str)
- classmethod create_vs_config_from_documents(documents, embedding_model=HuggingFaceEmbeddingConfig(provider=<EmbeddingProvider.HUGGINGFACE: 'huggingface'>, model='sentence-transformers/all-mpnet-base-v2', api_key=SecretStr(''), model_kwargs={'device': 'cpu'}, encode_kwargs={}, query_encode_kwargs={}, multi_process=False, cache_folder='/home/will/Projects/haive/resources/embeddings_cache', show_progress=False, use_cache=True), **kwargs)[source]ΒΆ
Create a VectorStoreConfig from a list of documents.
- Parameters:
documents (list[Document])
embedding_model (BaseEmbeddingConfig)
- Return type:
- classmethod create_vs_from_documents(documents, embedding_model=HuggingFaceEmbeddingConfig(provider=<EmbeddingProvider.HUGGINGFACE: 'huggingface'>, model='sentence-transformers/all-mpnet-base-v2', api_key=SecretStr(''), model_kwargs={'device': 'cpu'}, encode_kwargs={}, query_encode_kwargs={}, multi_process=False, cache_folder='/home/will/Projects/haive/resources/embeddings_cache', show_progress=False, use_cache=True), **kwargs)[source]ΒΆ
Create a VectorStore from a list of documents.
- Parameters:
documents (list[Document])
embedding_model (BaseEmbeddingConfig)
- Return type:
- add_document(document)[source]ΒΆ
Add a single document to the vector store config.
- Parameters:
document (Document)
- create_retriever(async_mode=False)[source]ΒΆ
Create a retriever from the vector store.
- Parameters:
async_mode (bool)
- create_vectorstore(async_mode=False)[source]ΒΆ
Create a vector store instance from this configuration.
- Parameters:
async_mode (bool)
- embedding_model: BaseEmbeddingConfigΒΆ
- model_config: ClassVar[ConfigDict] = {}ΒΆ
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- vector_store_provider: VectorStoreProviderΒΆ