Source code for haive.core.models.llm.providers.xai

"""xAI Provider Module.

This module implements the xAI language model provider for the Haive framework,
supporting Grok models developed by Elon Musk's xAI company.

The provider handles API key management, model configuration, and safe imports of
the langchain-xai package dependencies.

Examples:
    Basic usage:

    .. code-block:: python

        from haive.core.models.llm.providers.xai import XAIProvider

        provider = XAIProvider(
            model="grok-beta",
            temperature=0.7,
            max_tokens=1000
        )
        llm = provider.instantiate()

    With custom parameters::

        provider = XAIProvider(
            model="grok-1",
            temperature=0.1,
            top_p=0.9,
            stream=True
        )

.. autosummary::
   :toctree: generated/

   XAIProvider
"""

from typing import Any

from pydantic import Field

from haive.core.models.llm.provider_types import LLMProvider
from haive.core.models.llm.providers.base import BaseLLMProvider, ProviderImportError


[docs] class XAIProvider(BaseLLMProvider): """xAI language model provider configuration. This provider supports xAI's Grok family of models known for their real-time information access and conversational capabilities. Attributes: provider (LLMProvider): Always LLMProvider.XAI model (str): The xAI model to use temperature (float): Sampling temperature (0.0-2.0) max_tokens (int): Maximum tokens in response top_p (float): Nucleus sampling parameter stream (bool): Enable streaming responses stop (list): Stop sequences for generation Examples: Grok Beta for general conversation: .. code-block:: python provider = XAIProvider( model="grok-beta", temperature=0.7, max_tokens=2000 ) Grok with streaming:: provider = XAIProvider( model="grok-1", temperature=0.1, stream=True, top_p=0.9 ) """ provider: LLMProvider = Field( default=LLMProvider.XAI, description="Provider identifier" ) # xAI model parameters temperature: float | None = Field( default=None, ge=0, le=2, description="Sampling temperature" ) max_tokens: int | None = Field( default=None, ge=1, description="Maximum tokens in response" ) top_p: float | None = Field( default=None, ge=0, le=1, description="Nucleus sampling parameter" ) stream: bool = Field(default=False, description="Enable streaming responses") stop: list[str] | None = Field( default=None, description="Stop sequences for generation" ) def _get_chat_class(self) -> type[Any]: """Get the xAI chat class.""" try: from langchain_xai import ChatXAI return ChatXAI except ImportError as e: raise ProviderImportError( provider=self.provider.value, package=self._get_import_package(), message="xAI requires langchain-xai. Install with: pip install langchain-xai", ) from e def _get_default_model(self) -> str: """Get the default xAI model.""" return "grok-beta" def _get_import_package(self) -> str: """Get the required package name.""" return "langchain-xai" def _get_initialization_params(self, **kwargs) -> dict[str, Any]: """Get xAI-specific initialization parameters.""" params = { "model": self.model, **kwargs, } # Add model parameters if specified if self.temperature is not None: params["temperature"] = self.temperature if self.max_tokens is not None: params["max_tokens"] = self.max_tokens if self.top_p is not None: params["top_p"] = self.top_p if self.stream is not None: params["streaming"] = self.stream if self.stop is not None: params["stop"] = self.stop # Add API key api_key = self.get_api_key() if api_key: params["xai_api_key"] = api_key # Add extra params params.update(self.extra_params or {}) return params def _get_env_key_name(self) -> str: """Get the environment variable name for API key.""" return "XAI_API_KEY"
[docs] @classmethod def get_models(cls) -> list[str]: """Get available xAI models.""" return ["grok-beta", "grok-1", "grok-vision-beta"]