agents.reasoning_and_critique.self_discover.selector.agentยถ

Self-Discover Selector Agent implementation.

Classesยถ

SelectorAgent

Agent that selects relevant reasoning modules for a given task.

Module Contentsยถ

class agents.reasoning_and_critique.self_discover.selector.agent.SelectorAgent(name='selector', engine=None, **kwargs)ยถ

Bases: haive.agents.simple.SimpleAgent

Agent that selects relevant reasoning modules for a given task.

The Selector Agent is the first stage in the Self-Discover workflow. It analyzes the task and selects 3-5 reasoning modules from the available options that would be most effective for solving the problem.

nameยถ

Agent identifier (default: โ€œselectorโ€)

engineยถ

LLM configuration for the agent

Example

>>> from haive.core.engine.aug_llm import AugLLMConfig
>>>
>>> config = AugLLMConfig(temperature=0.3)
>>> selector = SelectorAgent(engine=config)
>>>
>>> result = await selector.arun({
...     "available_modules": "1. Critical thinking\\n2. Pattern recognition...",
...     "task_description": "Design a recommendation system"
... })

Initialize the Selector Agent.

Parameters:
  • name (str) โ€“ Name for the agent

  • engine (haive.core.engine.aug_llm.AugLLMConfig) โ€“ LLM configuration (if not provided, creates default)

  • **kwargs โ€“ Additional arguments passed to SimpleAgent