agents.rag.simple.enhanced_v3.answer_generator_agentΒΆ
Specialized Answer Generator Agent for SimpleRAG V3.
This module provides a specialized answer generation agent that extends SimpleAgent with enhanced features for generating answers from retrieved documents.
ClassesΒΆ
Specialized answer generation agent for SimpleRAG V3. |
Module ContentsΒΆ
- class agents.rag.simple.enhanced_v3.answer_generator_agent.SimpleAnswerAgent(/, **data)ΒΆ
Bases:
haive.agents.simple.agent.SimpleAgent
Specialized answer generation agent for SimpleRAG V3.
This agent extends SimpleAgent with RAG-specific features: - Document-aware prompt templates - Context formatting and processing - Source citation and attribution - Answer quality scoring - Enhanced metadata collection
Designed to work as the second agent in Enhanced MultiAgent V3 sequential pattern: RetrieverAgent β SimpleAnswerAgent
The agent expects input from RetrieverAgent containing: - documents: List of retrieved documents - query: Original user query - metadata: Retrieval metadata
Examples
Basic usage:
answer_agent = SimpleAnswerAgent( name="answer_generator", engine=AugLLMConfig(temperature=0.7), max_context_length=4000 )
With structured output:
class QAResponse(BaseModel): answer: str sources: List[str] confidence: float answer_agent = SimpleAnswerAgent( name="structured_answer", engine=AugLLMConfig(), structured_output_model=QAResponse )
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- async arun(input_data, debug=False, **kwargs)ΒΆ
Enhanced answer generation with document processing.