agents.reasoning_and_critique.self_discover.adapter.agentยถ
Self-Discover Adapter Agent implementation.
Classesยถ
Agent that adapts selected reasoning modules for specific tasks. |
Module Contentsยถ
- class agents.reasoning_and_critique.self_discover.adapter.agent.AdapterAgent(name='adapter', engine=None, **kwargs)ยถ
Bases:
haive.agents.simple.SimpleAgent
Agent that adapts selected reasoning modules for specific tasks.
The Adapter Agent is the second stage in the Self-Discover workflow. It takes the reasoning modules selected by the Selector Agent and adapts them to be concrete and actionable for the specific task at hand.
- nameยถ
Agent identifier (default: โadapterโ)
- engineยถ
LLM configuration for the agent
Example
>>> from haive.core.engine.aug_llm import AugLLMConfig >>> >>> config = AugLLMConfig(temperature=0.4) >>> adapter = AdapterAgent(engine=config) >>> >>> result = await adapter.arun({ ... "selected_modules": "1. Critical thinking: Analyze assumptions...", ... "task_description": "Design a recommendation system" ... })
Initialize the Adapter Agent.
- Parameters:
name (str) โ Name for the agent
engine (haive.core.engine.aug_llm.AugLLMConfig) โ LLM configuration (if not provided, creates default)
**kwargs โ Additional arguments passed to SimpleAgent