agents.memory_v2.kg_memory_agent¶
Knowledge Graph Memory Agent with Graph Database Integration.
This agent extends the existing KG transformer capabilities with: 1. Graph database upload and storage (Neo4j, Neptune, etc.) 2. Memory-specific knowledge graph construction 3. Time-weighted graph retrieval 4. Configurable storage backends
Based on existing ParallelKGTransformer but optimized for memory workflows.
Classes¶
Abstract connector for graph databases. |
|
Supported graph database backends. |
|
Knowledge Graph Memory Agent with database integration. |
|
Configuration for KG Memory Agent. |
Functions¶
|
Factory function to create KG Memory Agent. |
|
Create KG Memory Agent with Neo4j backend. |
Module Contents¶
- class agents.memory_v2.kg_memory_agent.GraphDatabaseConnector(config)¶
Abstract connector for graph databases.
Initialize connector with configuration.
- Parameters:
config (KGMemoryConfig)
- async close()¶
Close database connection.
- Return type:
None
- async connect()¶
Connect to graph database.
- Return type:
None
- async retrieve_graph(graph_id)¶
Retrieve knowledge graph by ID.
- class agents.memory_v2.kg_memory_agent.GraphStorageBackend¶
-
Supported graph database backends.
Initialize self. See help(type(self)) for accurate signature.
- class agents.memory_v2.kg_memory_agent.KGMemoryAgent(config)¶
Knowledge Graph Memory Agent with database integration.
Initialize KG Memory Agent.
- Parameters:
config (KGMemoryConfig)
- async close()¶
Close agent and database connections.
- Return type:
None
- async process_conversation_to_graph(messages, graph_id=None)¶
Process conversation messages into knowledge graph.
- async process_memories_to_graph(memories, graph_id=None)¶
Process memories into knowledge graph and store.
- async query_graph_by_entity(entity_name)¶
Query graph database for entity and its relationships.
- async retrieve_memory_graph(graph_id)¶
Retrieve stored knowledge graph.
- Parameters:
graph_id (str) – ID of graph to retrieve
- Returns:
KnowledgeGraph if found, None otherwise
- Return type:
haive.agents.document_modifiers.kg.kg_map_merge.models.KnowledgeGraph | None
- async setup()¶
Setup agent and connections.
- Return type:
None
- class agents.memory_v2.kg_memory_agent.KGMemoryConfig(/, **data)¶
Bases:
pydantic.BaseModel
Configuration for KG Memory Agent.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- model_config¶
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- agents.memory_v2.kg_memory_agent.create_memory_kg_agent(storage_backend='memory', llm_config=None, **storage_kwargs)¶
Factory function to create KG Memory Agent.
- Parameters:
storage_backend (str) – “memory”, “neo4j”, “file”
llm_config (haive.core.engine.aug_llm.AugLLMConfig) – LLM configuration
**storage_kwargs – Backend-specific settings
- Returns:
Configured KGMemoryAgent
- Return type:
- agents.memory_v2.kg_memory_agent.create_neo4j_memory_agent(uri, username, password, database='neo4j', llm_config=None)¶
Create KG Memory Agent with Neo4j backend.
- Parameters:
- Returns:
KGMemoryAgent configured for Neo4j
- Return type: