agents.memory_v2.advanced_rag_memory_agent¶
Advanced RAG Memory Agent with multi-stage retrieval and reranking.
This implementation provides state-of-the-art RAG capabilities: 1. Multi-stage retrieval: dense → sparse → reranking 2. Hybrid search combining vector, keyword, and graph 3. Query decomposition for complex questions 4. Memory-augmented generation with citations 5. Adaptive retrieval based on query complexity
Classes¶
Configuration for Advanced RAG Memory Agent. |
|
Advanced RAG Memory Agent with multi-stage retrieval. |
|
Query complexity levels. |
|
Different retrieval strategies available. |
Functions¶
Create a conversation-focused memory agent. |
|
Create a research-focused memory agent. |
|
Example of using Advanced RAG Memory Agent. |
Module Contents¶
- class agents.memory_v2.advanced_rag_memory_agent.AdvancedRAGConfig¶
Configuration for Advanced RAG Memory Agent.
- class agents.memory_v2.advanced_rag_memory_agent.AdvancedRAGMemoryAgent(config)¶
Advanced RAG Memory Agent with multi-stage retrieval.
This agent implements state-of-the-art retrieval-augmented generation with sophisticated memory management capabilities.
Init .
- Parameters:
config (AdvancedRAGConfig) – [TODO: Add description]
- async add_memory(content, metadata=None, importance='normal')¶
Add new memory to the system.
- analyze_query_complexity(query)¶
Analyze query complexity to choose optimal strategy.
- Parameters:
query (str)
- Return type:
- choose_retrieval_strategy(query, complexity)¶
Choose optimal retrieval strategy based on query and complexity.
- Parameters:
query (str)
complexity (QueryComplexity)
- Return type:
- async generate_with_citations(query, retrieved_docs, include_citations=None)¶
Generate response with citations.
- async get_memory_analytics()¶
Get comprehensive analytics about memory usage.
- async query_memory(query, strategy=None, include_analysis=True)¶
Query memory with advanced RAG capabilities.
- Parameters:
query (str)
strategy (RetrievalStrategy | None)
include_analysis (bool)
- Return type:
- async retrieve_documents(query, strategy=None, k=None)¶
Retrieve documents using specified strategy.
- Parameters:
query (str)
strategy (RetrievalStrategy | None)
k (int | None)
- Return type:
list[langchain_core.documents.Document]
- class agents.memory_v2.advanced_rag_memory_agent.QueryComplexity¶
-
Query complexity levels.
Initialize self. See help(type(self)) for accurate signature.
- class agents.memory_v2.advanced_rag_memory_agent.RetrievalStrategy¶
-
Different retrieval strategies available.
Initialize self. See help(type(self)) for accurate signature.
- async agents.memory_v2.advanced_rag_memory_agent.create_conversational_memory_agent()¶
Create a conversation-focused memory agent.
- Return type:
- async agents.memory_v2.advanced_rag_memory_agent.create_research_memory_agent()¶
Create a research-focused memory agent.
- Return type:
- async agents.memory_v2.advanced_rag_memory_agent.example_advanced_rag_usage()¶
Example of using Advanced RAG Memory Agent.