Advanced TopicsΒΆ

Advanced patterns and techniques for haive-mcp with 1900+ MCP servers.

Custom Agent DevelopmentΒΆ

Creating Specialized MCP AgentsΒΆ

Extend the base MCP agents for domain-specific needs:

from haive.mcp.agents.mcp_agent import MCPAgent
from haive.mcp.config import MCPConfig, MCPServerConfig

class DataScienceMCPAgent(MCPAgent):
    """Specialized agent for data science workflows."""

    def __init__(self, **kwargs):
        # Pre-configure with data science servers
        mcp_config = MCPConfig(
            enabled=True,
            auto_discover=True,
            categories=["data_analysis", "visualization", "ml_tools"]
        )
        super().__init__(mcp_config=mcp_config, **kwargs)

    async def analyze_dataset(self, file_path: str):
        """Analyze a dataset with automatic tool discovery."""
        prompt = f"Analyze the dataset at {file_path}, create visualizations, and provide insights"
        return await self.arun(prompt)

Dynamic Tool CompositionΒΆ

Runtime Tool DiscoveryΒΆ

Discover and add tools based on task requirements:

from haive.mcp.discovery import MCPDiscoveryEngine

class AdaptiveMCPAgent(EnhancedMCPAgent):
    """Agent that adapts its toolset based on the task."""

    async def adapt_to_task(self, task_description: str):
        """Analyze task and add relevant tools."""
        # Use discovery engine to find relevant servers
        discovery = MCPDiscoveryEngine()
        relevant_servers = await discovery.find_servers_for_task(task_description)

        # Add servers dynamically
        for server in relevant_servers:
            await self.add_mcp_server(server)

        # Re-initialize with new tools
        await self.initialize_mcp()

Server DevelopmentΒΆ

Creating Custom MCP ServersΒΆ

Build your own MCP servers for proprietary tools:

# custom_server.py
from mcp import Server, Tool
import asyncio

class CustomMCPServer(Server):
    """Custom MCP server for specialized tools."""

    def __init__(self):
        super().__init__("custom-server")
        self.register_tool(self.custom_operation)

    @Tool(
        name="custom_operation",
        description="Perform custom operation",
        parameters={
            "type": "object",
            "properties": {
                "input": {"type": "string"}
            }
        }
    )
    async def custom_operation(self, input: str) -> str:
        """Custom tool implementation."""
        # Your custom logic here
        return f"Processed: {input}"

# Run the server
if __name__ == "__main__":
    server = CustomMCPServer()
    asyncio.run(server.run())

Integrating Custom ServersΒΆ

# Add custom server to agent
agent = EnhancedMCPAgent(
    name="custom_agent",
    engine=AugLLMConfig(),
    custom_servers=[
        {
            "name": "custom-server",
            "command": "python",
            "args": ["custom_server.py"],
            "transport": "stdio"
        }
    ],
    auto_install=True
)

Performance OptimizationΒΆ

Connection PoolingΒΆ

Optimize MCP server connections:

from haive.mcp.optimization import MCPConnectionPool

# Create connection pool
pool = MCPConnectionPool(
    max_connections=10,
    connection_timeout=30,
    idle_timeout=300
)

# Use with agent
agent = EnhancedMCPAgent(
    name="optimized",
    engine=AugLLMConfig(),
    connection_pool=pool,
    mcp_categories=["core"]
)

Caching StrategiesΒΆ

Implement caching for frequently used operations:

from haive.mcp.cache import MCPCache

# Configure caching
cache = MCPCache(
    max_size=1000,
    ttl=3600,  # 1 hour
    cache_tool_results=True
)

agent = EnhancedMCPAgent(
    name="cached",
    engine=AugLLMConfig(),
    cache=cache,
    mcp_categories=["core"]
)

Parallel ProcessingΒΆ

Execute multiple MCP operations in parallel:

import asyncio

async def parallel_mcp_operations():
    """Run multiple MCP operations concurrently."""
    agent = EnhancedMCPAgent(
        name="parallel",
        engine=AugLLMConfig(),
        mcp_categories=["core"],
        auto_install=True
    )
    await agent.initialize_mcp()

    # Define tasks
    tasks = [
        agent.arun("Analyze file1.txt"),
        agent.arun("Search for patterns in logs"),
        agent.arun("Generate report from data")
    ]

    # Execute in parallel
    results = await asyncio.gather(*tasks)
    return results

Security ConsiderationsΒΆ

Sandboxing MCP ServersΒΆ

Run MCP servers in isolated environments:

from haive.mcp.security import MCPSandbox

# Configure sandbox
sandbox = MCPSandbox(
    enable_network=False,
    filesystem_access=["/tmp", "/data"],
    memory_limit="512M",
    cpu_limit=0.5
)

agent = EnhancedMCPAgent(
    name="secure",
    engine=AugLLMConfig(),
    sandbox=sandbox,
    mcp_categories=["core"]
)

Access ControlΒΆ

Implement fine-grained access control:

from haive.mcp.security import MCPAccessControl

# Define access policies
access_control = MCPAccessControl()
access_control.add_policy(
    server="filesystem",
    allowed_operations=["read"],
    denied_paths=["/etc", "/var"]
)

agent = EnhancedMCPAgent(
    name="restricted",
    engine=AugLLMConfig(),
    access_control=access_control,
    mcp_categories=["core"]
)

Monitoring & ObservabilityΒΆ

Metrics CollectionΒΆ

Track MCP usage and performance:

from haive.mcp.monitoring import MCPMetrics

# Setup metrics
metrics = MCPMetrics(
    enable_prometheus=True,
    port=9090
)

agent = EnhancedMCPAgent(
    name="monitored",
    engine=AugLLMConfig(),
    metrics=metrics,
    mcp_categories=["core"]
)

# Access metrics
stats = metrics.get_statistics()
print(f"Total operations: {stats['total_operations']}")
print(f"Average latency: {stats['avg_latency_ms']}ms")

Distributed TracingΒΆ

Trace MCP operations across systems:

from haive.mcp.tracing import MCPTracer
from opentelemetry import trace

# Configure tracing
tracer = MCPTracer(
    service_name="mcp-agent",
    jaeger_endpoint="http://localhost:14268"
)

agent = EnhancedMCPAgent(
    name="traced",
    engine=AugLLMConfig(),
    tracer=tracer,
    mcp_categories=["core"]
)

Scaling StrategiesΒΆ

Horizontal ScalingΒΆ

Distribute MCP operations across multiple instances:

from haive.mcp.scaling import MCPCluster

# Create MCP cluster
cluster = MCPCluster(
    nodes=["node1:8080", "node2:8080", "node3:8080"],
    load_balancer="round_robin"
)

agent = EnhancedMCPAgent(
    name="distributed",
    engine=AugLLMConfig(),
    cluster=cluster,
    mcp_categories=["core"]
)

Queue-Based ProcessingΒΆ

Process MCP requests through queues:

from haive.mcp.queue import MCPQueue
import asyncio

# Setup queue
queue = MCPQueue(
    broker="redis://localhost:6379",
    max_workers=10
)

# Producer
async def produce_tasks():
    agent = EnhancedMCPAgent(
        name="producer",
        engine=AugLLMConfig(),
        queue=queue,
        mcp_categories=["core"]
    )

    # Queue tasks
    for i in range(100):
        await agent.queue_task(f"Process file_{i}.txt")

# Consumer
async def consume_tasks():
    await queue.start_workers()

Next StepsΒΆ

  • Review Platform Architecture for system design

  • Explore Examples for production patterns

  • Check the API Reference for detailed APIs

  • Join the community for advanced discussions