Advanced Topics =============== Advanced patterns and techniques for haive-mcp with 1900+ MCP servers. Custom Agent Development ------------------------ Creating Specialized MCP Agents ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Extend the base MCP agents for domain-specific needs: .. code-block:: python from haive.mcp.agents.mcp_agent import MCPAgent from haive.mcp.config import MCPConfig, MCPServerConfig class DataScienceMCPAgent(MCPAgent): """Specialized agent for data science workflows.""" def __init__(self, **kwargs): # Pre-configure with data science servers mcp_config = MCPConfig( enabled=True, auto_discover=True, categories=["data_analysis", "visualization", "ml_tools"] ) super().__init__(mcp_config=mcp_config, **kwargs) async def analyze_dataset(self, file_path: str): """Analyze a dataset with automatic tool discovery.""" prompt = f"Analyze the dataset at {file_path}, create visualizations, and provide insights" return await self.arun(prompt) Dynamic Tool Composition ------------------------ Runtime Tool Discovery ~~~~~~~~~~~~~~~~~~~~~~ Discover and add tools based on task requirements: .. code-block:: python from haive.mcp.discovery import MCPDiscoveryEngine class AdaptiveMCPAgent(EnhancedMCPAgent): """Agent that adapts its toolset based on the task.""" async def adapt_to_task(self, task_description: str): """Analyze task and add relevant tools.""" # Use discovery engine to find relevant servers discovery = MCPDiscoveryEngine() relevant_servers = await discovery.find_servers_for_task(task_description) # Add servers dynamically for server in relevant_servers: await self.add_mcp_server(server) # Re-initialize with new tools await self.initialize_mcp() Server Development ------------------ Creating Custom MCP Servers ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Build your own MCP servers for proprietary tools: .. code-block:: python # custom_server.py from mcp import Server, Tool import asyncio class CustomMCPServer(Server): """Custom MCP server for specialized tools.""" def __init__(self): super().__init__("custom-server") self.register_tool(self.custom_operation) @Tool( name="custom_operation", description="Perform custom operation", parameters={ "type": "object", "properties": { "input": {"type": "string"} } } ) async def custom_operation(self, input: str) -> str: """Custom tool implementation.""" # Your custom logic here return f"Processed: {input}" # Run the server if __name__ == "__main__": server = CustomMCPServer() asyncio.run(server.run()) Integrating Custom Servers ~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python # Add custom server to agent agent = EnhancedMCPAgent( name="custom_agent", engine=AugLLMConfig(), custom_servers=[ { "name": "custom-server", "command": "python", "args": ["custom_server.py"], "transport": "stdio" } ], auto_install=True ) Performance Optimization ------------------------ Connection Pooling ~~~~~~~~~~~~~~~~~~ Optimize MCP server connections: .. code-block:: python from haive.mcp.optimization import MCPConnectionPool # Create connection pool pool = MCPConnectionPool( max_connections=10, connection_timeout=30, idle_timeout=300 ) # Use with agent agent = EnhancedMCPAgent( name="optimized", engine=AugLLMConfig(), connection_pool=pool, mcp_categories=["core"] ) Caching Strategies ~~~~~~~~~~~~~~~~~~ Implement caching for frequently used operations: .. code-block:: python from haive.mcp.cache import MCPCache # Configure caching cache = MCPCache( max_size=1000, ttl=3600, # 1 hour cache_tool_results=True ) agent = EnhancedMCPAgent( name="cached", engine=AugLLMConfig(), cache=cache, mcp_categories=["core"] ) Parallel Processing ~~~~~~~~~~~~~~~~~~~ Execute multiple MCP operations in parallel: .. code-block:: python import asyncio async def parallel_mcp_operations(): """Run multiple MCP operations concurrently.""" agent = EnhancedMCPAgent( name="parallel", engine=AugLLMConfig(), mcp_categories=["core"], auto_install=True ) await agent.initialize_mcp() # Define tasks tasks = [ agent.arun("Analyze file1.txt"), agent.arun("Search for patterns in logs"), agent.arun("Generate report from data") ] # Execute in parallel results = await asyncio.gather(*tasks) return results Security Considerations ------------------------ Sandboxing MCP Servers ~~~~~~~~~~~~~~~~~~~~~~ Run MCP servers in isolated environments: .. code-block:: python from haive.mcp.security import MCPSandbox # Configure sandbox sandbox = MCPSandbox( enable_network=False, filesystem_access=["/tmp", "/data"], memory_limit="512M", cpu_limit=0.5 ) agent = EnhancedMCPAgent( name="secure", engine=AugLLMConfig(), sandbox=sandbox, mcp_categories=["core"] ) Access Control ~~~~~~~~~~~~~~ Implement fine-grained access control: .. code-block:: python from haive.mcp.security import MCPAccessControl # Define access policies access_control = MCPAccessControl() access_control.add_policy( server="filesystem", allowed_operations=["read"], denied_paths=["/etc", "/var"] ) agent = EnhancedMCPAgent( name="restricted", engine=AugLLMConfig(), access_control=access_control, mcp_categories=["core"] ) Monitoring & Observability -------------------------- Metrics Collection ~~~~~~~~~~~~~~~~~~ Track MCP usage and performance: .. code-block:: python from haive.mcp.monitoring import MCPMetrics # Setup metrics metrics = MCPMetrics( enable_prometheus=True, port=9090 ) agent = EnhancedMCPAgent( name="monitored", engine=AugLLMConfig(), metrics=metrics, mcp_categories=["core"] ) # Access metrics stats = metrics.get_statistics() print(f"Total operations: {stats['total_operations']}") print(f"Average latency: {stats['avg_latency_ms']}ms") Distributed Tracing ~~~~~~~~~~~~~~~~~~~ Trace MCP operations across systems: .. code-block:: python from haive.mcp.tracing import MCPTracer from opentelemetry import trace # Configure tracing tracer = MCPTracer( service_name="mcp-agent", jaeger_endpoint="http://localhost:14268" ) agent = EnhancedMCPAgent( name="traced", engine=AugLLMConfig(), tracer=tracer, mcp_categories=["core"] ) Scaling Strategies ------------------ Horizontal Scaling ~~~~~~~~~~~~~~~~~~ Distribute MCP operations across multiple instances: .. code-block:: python from haive.mcp.scaling import MCPCluster # Create MCP cluster cluster = MCPCluster( nodes=["node1:8080", "node2:8080", "node3:8080"], load_balancer="round_robin" ) agent = EnhancedMCPAgent( name="distributed", engine=AugLLMConfig(), cluster=cluster, mcp_categories=["core"] ) Queue-Based Processing ~~~~~~~~~~~~~~~~~~~~~~ Process MCP requests through queues: .. code-block:: python from haive.mcp.queue import MCPQueue import asyncio # Setup queue queue = MCPQueue( broker="redis://localhost:6379", max_workers=10 ) # Producer async def produce_tasks(): agent = EnhancedMCPAgent( name="producer", engine=AugLLMConfig(), queue=queue, mcp_categories=["core"] ) # Queue tasks for i in range(100): await agent.queue_task(f"Process file_{i}.txt") # Consumer async def consume_tasks(): await queue.start_workers() Next Steps ---------- - Review :doc:`guides/platform-architecture` for system design - Explore :doc:`examples` for production patterns - Check the :doc:`API Reference ` for detailed APIs - Join the community for advanced discussions