Getting Started

Welcome to haive-mcp! Get up and running with 1900+ MCP servers in minutes.

Quick Install

Install haive-mcp with a single command:

pip install haive-mcp

That’s it! No complex setup, no configuration files. The system automatically discovers and installs MCP servers as needed.

Your First Agent

Create an MCP-enabled agent in just a few lines:

import asyncio
from haive.mcp.agents.enhanced_mcp_agent import EnhancedMCPAgent
from haive.core.engine.aug_llm import AugLLMConfig

async def main():
    # Create agent with automatic MCP discovery
    agent = EnhancedMCPAgent(
        name="my_assistant",
        engine=AugLLMConfig(temperature=0.7),
        mcp_categories=["core"],  # Auto-install filesystem, database, search
        auto_install=True
    )

    # Initialize (discovers and installs needed servers)
    await agent.initialize_mcp()

    # Use the agent - tools are automatically available!
    result = await agent.arun("List all Python files in the current directory")
    print(result)

asyncio.run(main())

Key Features

Zero Configuration

Haive-mcp works out of the box:

  • No manual installation of MCP servers

  • No configuration files to write

  • No tool registration needed

  • Automatic discovery from 1900+ servers

Dynamic Discovery

The agent analyzes your task and automatically finds the right tools:

# Agent automatically discovers file tools for this task
await agent.arun("Organize my documents by date")

# Agent automatically discovers web search tools for this task
await agent.arun("Research the latest AI developments")

# Agent automatically discovers database tools for this task
await agent.arun("Query the customer database for recent orders")

Rich Ecosystem

Access to 1900+ MCP servers across categories:

  • Core Tools: Filesystem, database, web search

  • AI Enhanced: LLM integrations, embeddings, analysis

  • Developer Tools: GitHub, code analysis, documentation

  • Data Tools: Processing, visualization, transformation

  • Communication: Email, Slack, notifications

  • And much more!

Common Use Cases

File Management

agent = EnhancedMCPAgent(
    name="file_manager",
    engine=AugLLMConfig(),
    mcp_categories=["enhanced_filesystem"],
    auto_install=True
)
await agent.initialize_mcp()

# The agent handles complex file operations
await agent.arun("Organize all images by date taken and remove duplicates")

Data Analysis

agent = EnhancedMCPAgent(
    name="analyst",
    engine=AugLLMConfig(),
    mcp_categories=["core", "ai_enhanced"],
    auto_install=True
)
await agent.initialize_mcp()

# Analyze data with automatic tool selection
await agent.arun("Analyze sales.csv and create a trend report with visualizations")

Web Research

agent = EnhancedMCPAgent(
    name="researcher",
    engine=AugLLMConfig(),
    mcp_categories=["core", "browser_automation"],
    auto_install=True
)
await agent.initialize_mcp()

# Research with web tools
await agent.arun("Research competitors' pricing strategies and create a comparison")

Understanding Categories

MCP servers are organized into logical categories:

core

Essential everyday tools - filesystem, database, web search

ai_enhanced

AI-powered capabilities - LLM chains, embeddings, analysis

enhanced_filesystem

Advanced file operations - bulk processing, smart organization

time_utilities

Date and scheduling - calendars, reminders, time zones

browser_automation

Web interaction - scraping, testing, automation

crypto_finance

Financial tools - trading, blockchain, analytics

github_enhanced

Development tools - code analysis, PR management

notifications

Communication - alerts, emails, messaging

Prerequisites

System Requirements

  • Python 3.8 or higher

  • Node.js 18+ (for NPM-based servers)

  • 2GB RAM minimum

  • Internet connection (for auto-discovery)

Optional Components

These enhance functionality but aren’t required:

  • Docker (for containerized servers)

  • Git (for repository-based servers)

  • Redis (for distributed caching)

Verification

Verify your installation:

from haive.mcp import verify_installation

# Check installation
status = verify_installation()
print(f"Installation status: {status}")

# List available categories
from haive.mcp.discovery import list_categories
categories = list_categories()
print(f"Available categories: {categories}")

# Check server count
from haive.mcp.registry import count_available_servers
count = count_available_servers()
print(f"Available servers: {count}")  # Should show 1900+

Troubleshooting

Common Issues

Import Error

Ensure haive-mcp is installed: pip install haive-mcp

Node.js Not Found

Install Node.js from https://nodejs.org/ (v18+ required)

Slow First Run

Initial discovery and caching takes time. Subsequent runs are faster.

Connection Timeout

Check internet connection. Increase timeout: initialization_timeout=120

Debug Mode

Enable debug output for troubleshooting:

import logging
logging.getLogger("haive.mcp").setLevel(logging.DEBUG)

# Create agent with verbose output
agent = EnhancedMCPAgent(
    name="debug",
    engine=AugLLMConfig(),
    mcp_categories=["core"],
    auto_install=True,
    verbose=True
)

Getting Help

Resources

Community

  • GitHub Issues: Report bugs and request features

  • Discussions: Ask questions and share experiences

  • Discord: Real-time help from the community

Next Steps

Now that you’re up and running:

  1. Follow the tutorials - Tutorials for hands-on learning

  2. Explore examples - Examples for real-world patterns

  3. Read the guides - Guides for best practices

  4. Check the API - autoapi/haive/mcp/index for detailed reference

Welcome to the world of 1900+ MCP servers at your fingertips!