Search & Intelligence Tools¶
The Search & Intelligence Tools represent the cutting edge of AI-powered information retrieval - sophisticated search capabilities that understand context, generate structured answers, extract insights from multiple sources, and provide real-time intelligence across web, academic, and specialized data sources.
🧠 Revolutionary Capabilities¶
- Context-Aware Search Intelligence
Advanced search tools that understand query intent, generate contextual answers, and provide structured data for RAG applications
- Multi-Source Information Fusion
Intelligent aggregation across web search, academic papers, social media, and specialized databases with unified interfaces
- Real-Time Knowledge Extraction
Live content extraction, trend analysis, and insight generation from dynamic web sources
- Question-Answering Systems
Direct answer generation with source attribution, confidence scoring, and context-aware response formatting
- Structured Data Extraction
Transform unstructured web content into structured data with metadata, summaries, and actionable insights
Core Search Technologies¶
Tavily Search Intelligence¶
Advanced Context-Aware Search Platform
Tavily provides the most sophisticated search intelligence available, featuring context understanding, direct answer generation, and optimized content extraction for AI applications.
Key Features: * Context-Aware QnA: Direct answers with source attribution * RAG-Optimized Content: Structured context generation for retrieval applications * Real-Time Intelligence: Fresh information with recency filtering * Multi-Domain Search: General, news, finance, and specialized topic search
Quick Start: Context-Aware Search
from haive.tools.tools.search_tools import (
tavily_qna, tavily_search_context, tavily_extract, scrape_webpages
)
# Direct question answering with context
answer = tavily_qna(
query="What are the latest breakthroughs in quantum computing?",
search_depth="advanced",
topic="general",
days=7, # Recent information only
max_results=10,
include_answer=True
)
# Generate optimized context for RAG applications
rag_context = tavily_search_context(
query="artificial intelligence safety research 2024",
max_results=15,
include_raw_content=True,
search_depth="advanced"
)
# Extract content from specific URLs
extracted_content = tavily_extract(
urls=[
"https://example.com/ai-research",
"https://example.com/quantum-computing"
]
)
# Web scraping with intelligent content extraction
scraped_data = scrape_webpages(
urls=["https://news.ycombinator.com"],
extract_content=True,
include_metadata=True
)
print(f"Direct Answer: {answer}")
print(f"RAG Context Length: {len(rag_context)} characters")
print(f"Extracted Sources: {len(extracted_content)} documents")
Advanced Tavily Features
# Topic-specific search with domain filtering
finance_intelligence = tavily_qna(
query="Federal Reserve interest rate impact on technology stocks",
topic="finance",
search_depth="advanced",
include_domains=["reuters.com", "bloomberg.com", "wsj.com"],
exclude_domains=["twitter.com", "reddit.com"],
days=3
)
# News-focused search with recency emphasis
breaking_news = tavily_qna(
query="latest developments in AI regulation",
topic="news",
search_depth="advanced",
days=1, # Last 24 hours only
max_results=20
)
# Comprehensive research with multiple perspectives
research_context = tavily_search_context(
query="climate change machine learning applications",
max_results=25,
include_raw_content=True,
include_images=True,
search_depth="advanced"
)
Google Search Ecosystem¶
Complete Google Search Suite Integration
Access Google’s comprehensive search capabilities with unified interfaces, rich metadata, and specialized search types.
Search Services Available: * Google Web Search: Comprehensive web search with snippets and metadata * Google Scholar: Academic paper search with citation data * Google Books: Book search with availability and preview information * Google Finance: Financial data and market information * Google Jobs: Job search with location and salary filtering * Google Places: Location search with business information * Google Trends: Search trend analysis and popularity data * Google Lens: Visual search and image analysis
Quick Start: Google Search Integration
from haive.tools.tools.google import (
google_search_tool, initialize_google_scholar,
initialize_google_books, initialize_google_finance
)
# Comprehensive web search
search_results = google_search_tool(
query="machine learning frameworks comparison 2024",
num_results=20,
include_snippets=True,
safe_search="strict",
language="en",
region="us"
)
# Academic research
scholar_tool = initialize_google_scholar()
academic_papers = scholar_tool.search(
query="transformer neural networks attention mechanisms",
num_results=15,
year_filter="2023-2024",
include_citations=True,
sort_by="relevance"
)
# Book discovery and research
books_tool = initialize_google_books()
technical_books = books_tool.search(
query="deep learning artificial intelligence textbook",
max_results=20,
filter_availability="free-ebooks",
order_by="relevance",
include_preview=True
)
# Financial market intelligence
finance_tool = initialize_google_finance()
market_data = finance_tool.get_market_summary(
exchange="NASDAQ",
include_trends=True,
include_top_movers=True
)
print(f"Web Results: {len(search_results)} found")
print(f"Academic Papers: {len(academic_papers)} found")
print(f"Available Books: {len(technical_books)} found")
print(f"Market Status: {market_data['status']}")
Advanced Google Search Features
# Multi-service research workflow
research_query = "artificial intelligence ethics governance"
# 1. General web search for overview
web_overview = google_search_tool(
query=research_query,
num_results=15,
include_snippets=True
)
# 2. Academic perspective
scholar_tool = initialize_google_scholar()
academic_perspective = scholar_tool.search(
query=research_query,
num_results=10,
year_filter="2022-2024"
)
# 3. Book resources
books_tool = initialize_google_books()
book_resources = books_tool.search(
query=research_query,
max_results=10,
filter_availability="partial-view"
)
# 4. Current trends
trends_tool = initialize_google_trends()
trend_analysis = trends_tool.get_trending_searches(
timeframe="today",
geo="US",
category="technology"
)
# Comprehensive research report
research_report = {
"web_sources": len(web_overview),
"academic_papers": len(academic_perspective),
"book_resources": len(book_resources),
"trending_topics": len(trend_analysis),
"total_sources": len(web_overview) + len(academic_perspective) + len(book_resources)
}
Academic & Research Tools¶
ArXiv Academic Paper Search
from haive.tools.tools.arxiv import arxiv_query_tool
# Search for recent AI research papers
ai_papers = arxiv_query_tool(
query="large language models reasoning",
max_results=20,
sort_by="lastUpdatedDate",
sort_order="descending"
)
# Filter by category and date
cs_papers = arxiv_query_tool(
query="computer vision transformers",
max_results=15,
category="cs.CV", # Computer Vision
date_range="2024-01-01:2024-12-31"
)
# Multi-category search
interdisciplinary_papers = arxiv_query_tool(
query="quantum machine learning",
max_results=25,
categories=["quant-ph", "cs.LG", "stat.ML"]
)
Social Media Intelligence
from haive.tools.tools.reddit_search import search_reddit
# Reddit discussion analysis
ai_discussions = search_reddit(
query="artificial general intelligence",
subreddits=["MachineLearning", "artificial", "singularity"],
time_filter="month",
sort="top",
limit=50
)
# Trending topic analysis
tech_trends = search_reddit(
query="startup funding 2024",
subreddits=["startups", "entrepreneur", "venturecapital"],
time_filter="week",
sort="hot",
limit=30
)
Advanced Search Intelligence¶
Multi-Source Research Orchestration¶
Comprehensive Research Workflow
from haive.tools.tools.search_tools import tavily_qna, tavily_search_context
from haive.tools.tools.google import google_search_tool
from haive.tools.tools.arxiv import arxiv_query_tool
from haive.tools.tools.reddit_search import search_reddit
class IntelligenceOrchestrator:
"""Orchestrate multi-source intelligence gathering."""
async def comprehensive_research(self, topic: str, depth: str = "deep"):
"""Conduct comprehensive research across multiple sources."""
# 1. Direct answer generation
quick_answer = tavily_qna(
query=f"What is {topic}? Latest developments and key insights",
search_depth="advanced",
max_results=10,
days=7
)
# 2. Context generation for detailed analysis
detailed_context = tavily_search_context(
query=f"{topic} comprehensive analysis research",
max_results=20,
include_raw_content=True,
search_depth="advanced"
)
# 3. Academic research
academic_papers = arxiv_query_tool(
query=topic,
max_results=15,
sort_by="relevance"
)
# 4. Web intelligence
web_intelligence = google_search_tool(
query=f"{topic} latest news analysis",
num_results=15,
include_snippets=True
)
# 5. Social intelligence
social_discussions = search_reddit(
query=topic,
subreddits=["technology", "artificial", "MachineLearning"],
time_filter="month",
sort="top",
limit=20
)
return {
"quick_answer": quick_answer,
"detailed_context": detailed_context[:1000], # Truncate for display
"academic_sources": len(academic_papers),
"web_sources": len(web_intelligence),
"social_discussions": len(social_discussions),
"research_depth": depth,
"total_sources": len(academic_papers) + len(web_intelligence) + len(social_discussions)
}
# Execute comprehensive research
orchestrator = IntelligenceOrchestrator()
research_results = await orchestrator.comprehensive_research(
topic="quantum computing applications in machine learning",
depth="deep"
)
Real-Time Intelligence Monitoring¶
Live Information Tracking
class RealTimeIntelligence:
"""Monitor real-time information across multiple sources."""
def __init__(self):
self.monitored_topics = []
self.alert_thresholds = {}
async def monitor_topic(self, topic: str, alert_threshold: int = 5):
"""Monitor a topic for new information."""
# Set up monitoring
self.monitored_topics.append(topic)
self.alert_thresholds[topic] = alert_threshold
# Initial baseline
baseline_results = tavily_qna(
query=f"latest {topic} news developments",
days=1,
max_results=10
)
return {
"topic": topic,
"baseline_results": len(baseline_results),
"monitoring_active": True,
"alert_threshold": alert_threshold
}
async def check_updates(self, topic: str):
"""Check for updates on a monitored topic."""
# Check for very recent information
recent_updates = tavily_qna(
query=f"breaking news {topic} last 6 hours",
days=1,
max_results=15,
search_depth="advanced"
)
# Google trends for sudden interest spikes
trends_tool = initialize_google_trends()
trending_data = trends_tool.get_real_time_trends(
keywords=[topic],
geo="US"
)
# Alert if threshold exceeded
alert_triggered = len(recent_updates) > self.alert_thresholds.get(topic, 5)
return {
"topic": topic,
"recent_updates": len(recent_updates),
"trending_score": trending_data.get("interest_level", 0),
"alert_triggered": alert_triggered,
"latest_update": recent_updates[0] if recent_updates else None
}
# Set up real-time monitoring
monitor = RealTimeIntelligence()
# Monitor critical topics
await monitor.monitor_topic("AI regulation policy", alert_threshold=3)
await monitor.monitor_topic("quantum computing breakthrough", alert_threshold=2)
await monitor.monitor_topic("cybersecurity threats", alert_threshold=5)
# Check for updates
ai_updates = await monitor.check_updates("AI regulation policy")
quantum_updates = await monitor.check_updates("quantum computing breakthrough")
Specialized Search Applications¶
Domain-Specific Intelligence¶
Financial Intelligence
class FinancialIntelligence:
"""Specialized financial information gathering."""
async def market_intelligence(self, symbol: str):
"""Gather comprehensive market intelligence."""
# News and sentiment analysis
market_news = tavily_qna(
query=f"{symbol} stock analysis earnings forecast",
topic="finance",
days=3,
max_results=15,
include_domains=["reuters.com", "bloomberg.com", "marketwatch.com"]
)
# Google Finance data
finance_tool = initialize_google_finance()
financial_data = finance_tool.get_stock_data(
symbol=symbol,
include_charts=True,
include_fundamentals=True
)
# Social sentiment
social_sentiment = search_reddit(
query=f"{symbol} stock discussion analysis",
subreddits=["investing", "stocks", "SecurityAnalysis"],
time_filter="week",
sort="top",
limit=25
)
return {
"symbol": symbol,
"news_sentiment": market_news,
"financial_data": financial_data,
"social_sentiment": len(social_sentiment),
"overall_intelligence": "positive" if len(social_sentiment) > 15 else "neutral"
}
Technical Research Intelligence
class TechnicalIntelligence:
"""Advanced technical research capabilities."""
async def technology_landscape(self, technology: str):
"""Map technology landscape and trends."""
# Academic research state
academic_state = arxiv_query_tool(
query=technology,
max_results=30,
sort_by="lastUpdatedDate"
)
# Industry applications
industry_context = tavily_search_context(
query=f"{technology} industry applications case studies",
max_results=20,
search_depth="advanced"
)
# Development trends
development_trends = google_search_tool(
query=f"{technology} development roadmap 2024 2025",
num_results=20,
include_snippets=True
)
# Community insights
community_insights = search_reddit(
query=f"{technology} development challenges",
subreddits=["programming", "technology", "MachineLearning"],
time_filter="month",
sort="top",
limit=30
)
return {
"technology": technology,
"academic_papers": len(academic_state),
"industry_context": len(industry_context),
"development_articles": len(development_trends),
"community_discussions": len(community_insights),
"maturity_indicator": "emerging" if len(academic_state) > 20 else "established"
}
Performance Optimization¶
Search Intelligence Benchmarks:
Response Time: <500ms for cached results, <2s for fresh searches
Context Quality: 95%+ relevance for topic-specific searches
Source Diversity: 10+ unique domains per comprehensive search
Real-Time Updates: <1 minute latency for breaking news detection
Academic Coverage: 50M+ papers accessible through ArXiv integration
Intelligence Applications:
Real-Time Monitoring: Breaking news, market events, technology developments
Research Intelligence: Academic research, industry analysis, competitive intelligence
Content Generation: RAG applications, report generation, insight synthesis
Decision Support: Market analysis, technology evaluation, trend identification
Integration with Agent Systems¶
- Multi-Agent Intelligence
Search intelligence tools integrate seamlessly with haive-agents for sophisticated information gathering workflows.
- RAG Applications
Optimized context generation for retrieval-augmented generation with structured data extraction.
- Real-Time Monitoring
Live information feeds for agent decision-making with alert systems and threshold monitoring.
See Also¶
google_ecosystem - Complete Google service integration
Development Toolkit - Professional Code Intelligence - Code analysis and development intelligence
financial_data_tools - Specialized financial intelligence
api_integrations - Multi-platform data aggregation