prebuilt.perplexity.base.engines¶
Engine configurations for the Perplexity multi-agent system.
This module defines all the engine configurations used by different agents, including LLM configurations, tool configurations, and retrieval engines.
Classes¶
Output model for document relevance scoring. |
|
Output model for response generation. |
|
Output model for quality assurance. |
|
Output model for query analysis. |
|
Output model for search query generation. |
Functions¶
Create a calculator tool for mathematical operations. |
|
Create a Python code interpreter tool. |
|
Create engine for document relevance scoring. |
|
Create the appropriate set of engines for a search mode. |
|
Create engine for multi-step planning. |
|
Create engine for project analysis. |
|
Create engine for quality assurance. |
|
Create engine for query analysis. |
|
|
Create engine for RAG-based response generation. |
Create engine for chain-of-thought reasoning. |
|
Create engine for research planning. |
|
|
Create a retriever configuration. |
Create engine for search query generation. |
|
Create engine for source analysis. |
|
Create engine for research synthesis. |
|
Create a Tavily search tool configuration. |
|
Create engine for tool orchestration. |
|
|
Create a vector store configuration. |
Create a web page loader tool. |
|
|
Get the appropriate tools for a search mode. |
Module Contents¶
- class prebuilt.perplexity.base.engines.DocumentScoringOutput(/, **data)¶
Bases:
pydantic.BaseModel
Output model for document relevance scoring.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- class prebuilt.perplexity.base.engines.GeneratedResponse(/, **data)¶
Bases:
pydantic.BaseModel
Output model for response generation.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- class prebuilt.perplexity.base.engines.QualityCheckOutput(/, **data)¶
Bases:
pydantic.BaseModel
Output model for quality assurance.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- class prebuilt.perplexity.base.engines.QueryAnalysisOutput(/, **data)¶
Bases:
pydantic.BaseModel
Output model for query analysis.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- class prebuilt.perplexity.base.engines.SearchQueryOutput(/, **data)¶
Bases:
pydantic.BaseModel
Output model for search query generation.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- prebuilt.perplexity.base.engines.create_calculator_tool()¶
Create a calculator tool for mathematical operations.
- Return type:
langchain_core.tools.StructuredTool
- prebuilt.perplexity.base.engines.create_code_interpreter_tool()¶
Create a Python code interpreter tool.
- Return type:
langchain_core.tools.StructuredTool
- prebuilt.perplexity.base.engines.create_document_scoring_engine()¶
Create engine for document relevance scoring.
- Return type:
haive.core.engine.aug_llm.AugLLMConfig
- prebuilt.perplexity.base.engines.create_engine_set_for_mode(mode)¶
Create the appropriate set of engines for a search mode.
- Parameters:
mode (haive.agents.perplexity.base.state.SearchMode)
- Return type:
Dict[str, haive.core.engine.aug_llm.AugLLMConfig]
- prebuilt.perplexity.base.engines.create_planning_engine()¶
Create engine for multi-step planning.
- Return type:
haive.core.engine.aug_llm.AugLLMConfig
- prebuilt.perplexity.base.engines.create_project_analysis_engine()¶
Create engine for project analysis.
- Return type:
haive.core.engine.aug_llm.AugLLMConfig
- prebuilt.perplexity.base.engines.create_quality_assurance_engine()¶
Create engine for quality assurance.
- Return type:
haive.core.engine.aug_llm.AugLLMConfig
- prebuilt.perplexity.base.engines.create_query_analysis_engine()¶
Create engine for query analysis.
- Return type:
haive.core.engine.aug_llm.AugLLMConfig
- prebuilt.perplexity.base.engines.create_rag_generation_engine(model=ModelChoice.GPT_4O)¶
Create engine for RAG-based response generation.
- Parameters:
model (haive.agents.perplexity.base.state.ModelChoice)
- Return type:
haive.core.engine.aug_llm.AugLLMConfig
- prebuilt.perplexity.base.engines.create_reasoning_engine()¶
Create engine for chain-of-thought reasoning.
- Return type:
haive.core.engine.aug_llm.AugLLMConfig
- prebuilt.perplexity.base.engines.create_research_planning_engine()¶
Create engine for research planning.
- Return type:
haive.core.engine.aug_llm.AugLLMConfig
- prebuilt.perplexity.base.engines.create_retriever_config(vector_store_config, search_type='similarity', k=5)¶
Create a retriever configuration.
- prebuilt.perplexity.base.engines.create_search_generation_engine()¶
Create engine for search query generation.
- Return type:
haive.core.engine.aug_llm.AugLLMConfig
- prebuilt.perplexity.base.engines.create_source_analysis_engine()¶
Create engine for source analysis.
- Return type:
haive.core.engine.aug_llm.AugLLMConfig
- prebuilt.perplexity.base.engines.create_synthesis_engine()¶
Create engine for research synthesis.
- Return type:
haive.core.engine.aug_llm.AugLLMConfig
- prebuilt.perplexity.base.engines.create_tavily_search_tool()¶
Create a Tavily search tool configuration.
- Return type:
langchain_core.tools.StructuredTool
- prebuilt.perplexity.base.engines.create_tool_orchestration_engine()¶
Create engine for tool orchestration.
- Return type:
haive.core.engine.aug_llm.AugLLMConfig
- prebuilt.perplexity.base.engines.create_vector_store_config(name='perplexity_knowledge_base', provider=VectorStoreProvider.FAISS)¶
Create a vector store configuration.
- Parameters:
name (str)
provider (haive.core.engine.vectorstore.VectorStoreProvider)
- Return type:
haive.core.engine.vectorstore.VectorStoreConfig
- prebuilt.perplexity.base.engines.create_web_loader_tool()¶
Create a web page loader tool.
- Return type:
langchain_core.tools.StructuredTool
- prebuilt.perplexity.base.engines.get_tools_for_mode(mode)¶
Get the appropriate tools for a search mode.
- Parameters:
mode (haive.agents.perplexity.base.state.SearchMode)
- Return type:
List[langchain_core.tools.StructuredTool]