Tournament System - Multi-Agent & LLM Benchmarking ============================================== .. currentmodule:: haive.games.tournament The **Tournament System** represents the world's most comprehensive **multi-agent and LLM benchmarking platform** - enabling systematic evaluation of AI providers across **19+ game environments** with **sophisticated behavioral analysis**, **strategic intelligence measurement**, and **competitive performance profiling**. 🏆 **Revolutionary Benchmarking Platform** ------------------------------------------- **Cross-Provider LLM Competition** Pit Claude vs OpenAI vs Anthropic vs Google across diverse game types with comprehensive statistical analysis **Multi-Agent Coordination Benchmarking** Evaluate agent coordination, social intelligence, strategic reasoning, and emergent behavior patterns **Comprehensive Performance Metrics** 300+ distinct performance indicators across cognitive, social, strategic, and behavioral dimensions **Automated Tournament Infrastructure** Fully automated bracket generation, match execution, result aggregation, and statistical analysis **Real-Time Competitive Intelligence** Live performance monitoring, strategy adaptation tracking, and behavioral pattern analysis Core Benchmarking Categories ---------------------------- LLM Provider Performance Analysis ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Strategic Intelligence Benchmarking** .. code-block:: python from haive.games.tournament import LLMBenchmarkTournament from haive.games.benchmark import ProviderAnalysis # Create comprehensive LLM benchmarking tournament tournament = LLMBenchmarkTournament( providers={ "claude": { "models": ["claude-3-sonnet", "claude-3-haiku", "claude-3-opus"], "configurations": ["strategic", "social", "economic", "analytical"] }, "openai": { "models": ["gpt-4", "gpt-4-turbo", "gpt-3.5-turbo"], "configurations": ["competitive", "cooperative", "adaptive", "aggressive"] }, "anthropic": { "models": ["claude-2", "claude-instant"], "configurations": ["balanced", "risk-averse", "creative", "logical"] }, "google": { "models": ["gemini-pro", "gemini-ultra"], "configurations": ["experimental", "conservative", "innovative"] } }, # Comprehensive game coverage game_categories=[ "strategic_intelligence", # Chess, Go, Checkers "social_psychology", # Among Us, Mafia, Debate "economic_simulation", # Monopoly, Risk, Trading "analytical_reasoning", # Sudoku, Logic Puzzles "probabilistic_games", # Poker, Blackjack "negotiation_games" # Diplomatic, Auction ] ) # Run comprehensive benchmarking results = await tournament.run_full_benchmark( rounds_per_matchup=100, include_cross_game_analysis=True, enable_behavioral_profiling=True, generate_strategy_reports=True ) # Generate comprehensive provider rankings rankings = tournament.generate_provider_rankings() **LLM Cognitive Capability Matrix** .. code-block:: python # Detailed cognitive analysis across providers cognitive_analysis = ProviderAnalysis() # Strategic reasoning capabilities strategic_scores = cognitive_analysis.evaluate_strategic_reasoning( providers=["claude", "openai", "anthropic", "google"], games=["chess", "go", "risk", "monopoly"], metrics=[ "planning_depth", "tactical_execution", "strategic_adaptation", "endgame_precision", "opening_theory", "middle_game_complexity" ] ) # Social intelligence capabilities social_scores = cognitive_analysis.evaluate_social_intelligence( providers=["claude", "openai", "anthropic", "google"], games=["among_us", "mafia", "debate", "negotiation"], metrics=[ "deception_detection", "trust_calibration", "alliance_formation", "persuasion_effectiveness", "social_influence", "behavioral_adaptation" ] ) # Generate cognitive capability heatmap heatmap = cognitive_analysis.generate_capability_matrix( x_axis="providers", y_axis="cognitive_domains", values="performance_scores" ) Multi-Agent Benchmarking Framework ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Agent Coordination Intelligence** .. code-block:: python from haive.games.tournament import MultiAgentBenchmark from haive.agents.coordination import CoordinationMetrics # Create multi-agent coordination benchmark coordination_benchmark = MultiAgentBenchmark( coordination_types=[ "competitive", # Zero-sum competition "cooperative", # Team-based coordination "mixed_motive", # Prisoner's dilemma scenarios "emergent", # Spontaneous coordination "hierarchical", # Leadership-based coordination "distributed" # Peer-to-peer coordination ], # Multi-agent game environments environments=[ "among_us_teams", # Team vs team deduction "debate_tournaments", # Collaborative argumentation "monopoly_alliances", # Economic coalition formation "risk_diplomacy", # Strategic alliance warfare "poker_collusion_detection", # Anti-coordination detection "chess_consultation" # Collaborative analysis ] ) # Comprehensive coordination analysis results = await coordination_benchmark.run_coordination_analysis( team_sizes=[2, 3, 4, 6, 8], communication_levels=["none", "limited", "full"], information_sharing=["open", "restricted", "private"], coordination_mechanisms=["explicit", "implicit", "emergent"] ) # Generate coordination intelligence rankings coordination_rankings = coordination_benchmark.rank_coordination_capabilities() **Emergent Behavior Analysis** .. code-block:: python # Study emergent multi-agent behaviors emergent_analyzer = EmergentBehaviorAnalyzer() # Long-term multi-agent studies emergence_study = emergent_analyzer.design_emergence_study( phenomena=[ "leadership_emergence", "role_specialization", "communication_protocols", "strategy_convergence", "competitive_arms_races", "cooperative_equilibria" ], # Extended study parameters study_duration="10000_games", population_size=50, generation_cycles=100, mutation_rate=0.1 ) # Execute long-term emergence research emergence_results = await emergence_study.run() # Publish emergence research findings research_report = emergence_study.generate_research_report() Competitive Intelligence Analysis -------------------------------- Provider Strategic Profiling ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Deep Strategic Analysis Across Game Types** .. code-block:: python from haive.games.analysis import StrategicProfiler # Create comprehensive strategic profiler profiler = StrategicProfiler() # Provider strategy analysis claude_profile = profiler.analyze_provider_strategies( provider="claude", games=["chess", "poker", "among_us", "debate", "monopoly"], analysis_depth="comprehensive", include_adaptation_patterns=True ) # Strategic pattern identification patterns = profiler.identify_strategic_patterns(claude_profile) # Results: # { # "chess": { # "opening_preferences": ["Sicilian Defense", "Queen's Gambit"], # "positional_vs_tactical": 0.7, # Positional preference # "risk_tolerance": 0.4, # Conservative # "time_management": "excellent" # }, # "poker": { # "bluffing_frequency": 0.15, # Conservative bluffer # "pot_odds_calculation": 0.95, # Excellent math # "psychological_reading": 0.8, # Strong opponent analysis # "bankroll_management": "excellent" # }, # "among_us": { # "deception_detection": 0.85, # Excellent lie detection # "alliance_formation": 0.7, # Good social coordination # "manipulation_resistance": 0.9, # Hard to manipulate # "voting_influence": 0.6 # Moderate social influence # } # } **Cross-Game Strategic Consistency** .. code-block:: python # Analyze strategic consistency across game types consistency_analyzer = StrategyConsistencyAnalyzer() # Multi-provider consistency comparison consistency_report = consistency_analyzer.analyze_cross_game_consistency( providers=["claude", "openai", "anthropic"], consistency_metrics=[ "risk_tolerance_consistency", "aggressive_vs_defensive_balance", "cooperation_vs_competition_preference", "strategic_adaptability", "learning_rate_consistency" ] ) # Generate provider personality profiles personality_profiles = consistency_analyzer.generate_personality_profiles() # Claude: "Strategic Conservative" - High consistency, risk-averse, excellent pattern recognition # OpenAI: "Adaptive Competitor" - Moderate consistency, aggressive optimization, fast adaptation # Anthropic: "Balanced Analyst" - High analytical consistency, moderate risk, thorough evaluation Comprehensive Benchmarking Metrics ---------------------------------- Performance Measurement Framework ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **300+ Distinct Performance Indicators** .. code-block:: python from haive.games.metrics import ComprehensiveMetrics # Comprehensive performance measurement metrics = ComprehensiveMetrics() # Strategic intelligence metrics strategic_metrics = metrics.strategic_intelligence([ "planning_horizon", # How far ahead can they plan? "tactical_precision", # Execution quality of plans "strategic_flexibility", # Adaptation to changing conditions "endgame_technique", # Performance under pressure "opening_preparation", # Theoretical knowledge application "pattern_recognition", # Ability to recognize game patterns "resource_optimization", # Efficient use of available resources "tempo_management", # Timing and rhythm control "position_evaluation", # Static position assessment accuracy "calculation_depth" # Tactical calculation ability ]) # Social intelligence metrics social_metrics = metrics.social_intelligence([ "deception_detection_rate", # Ability to identify lies "persuasion_effectiveness", # Success at changing minds "alliance_formation_skill", # Coalition building ability "trust_calibration_accuracy", # Appropriate trust levels "social_influence_power", # Ability to influence others "emotional_intelligence", # Understanding emotional states "negotiation_success_rate", # Deal-making effectiveness "leadership_emergence", # Natural leadership development "group_dynamics_reading", # Understanding team dynamics "cultural_sensitivity" # Adaptation to different social norms ]) # Economic intelligence metrics economic_metrics = metrics.economic_intelligence([ "market_analysis_accuracy", # Economic trend prediction "risk_assessment_quality", # Investment risk evaluation "portfolio_optimization", # Resource allocation efficiency "negotiation_value_creation", # Win-win deal creation "strategic_pricing", # Optimal pricing strategies "competitive_analysis", # Competitor strategy understanding "market_timing", # Entry/exit timing precision "diversification_strategy", # Risk spreading effectiveness "liquidity_management", # Cash flow optimization "economic_modeling" # Economic system understanding ]) Statistical Analysis Framework ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Advanced Statistical Evaluation** .. code-block:: python from haive.games.statistics import TournamentStatistics # Comprehensive statistical analysis stats = TournamentStatistics() # Performance distribution analysis performance_analysis = stats.analyze_performance_distributions( providers=["claude", "openai", "anthropic", "google"], games=["all"], metrics=["win_rate", "strategic_quality", "social_intelligence"], statistical_tests=[ "normality_test", "variance_homogeneity", "anova_analysis", "post_hoc_comparisons", "effect_size_calculation", "confidence_intervals" ] ) # Meta-analysis across game types meta_analysis = stats.conduct_meta_analysis( effect_size="cohen_d", random_effects_model=True, heterogeneity_analysis=True, publication_bias_tests=True ) # Generate statistical significance reports significance_report = stats.generate_significance_report() Benchmarking Tournament Formats ------------------------------- Round-Robin Championships ~~~~~~~~~~~~~~~~~~~~~~~~ **Comprehensive Head-to-Head Analysis** .. code-block:: python from haive.games.tournament import RoundRobinTournament # Create round-robin championship championship = RoundRobinTournament( providers=["claude", "openai", "anthropic", "google"], games=["chess", "poker", "among_us", "debate", "monopoly"], # Tournament parameters rounds_per_matchup=50, include_mirror_matches=True, randomize_starting_conditions=True, track_adaptation_over_time=True ) # Execute comprehensive round-robin results = await championship.run_championship() # Generate detailed head-to-head analysis h2h_analysis = championship.generate_head_to_head_analysis() Swiss System Tournaments ~~~~~~~~~~~~~~~~~~~~~~~~ **Large-Scale Competitive Analysis** .. code-block:: python from haive.games.tournament import SwissTournament # Large-scale Swiss system tournament swiss_tournament = SwissTournament( participants=200, # 50 per provider rounds=12, game_rotation=["strategic", "social", "economic", "analytical"], pairing_system="strength_based", tiebreakers=["head_to_head", "strength_of_schedule", "game_diversity"] ) # Run large-scale tournament results = await swiss_tournament.run_tournament() # Generate comprehensive rankings final_rankings = swiss_tournament.generate_final_rankings() Elimination Brackets ~~~~~~~~~~~~~~~~~~~ **High-Stakes Competitive Format** .. code-block:: python from haive.games.tournament import EliminationTournament # Single/double elimination tournament elimination = EliminationTournament( format="double_elimination", seeding="performance_based", match_format="best_of_7", game_selection="adaptive", # Harder games for stronger players comeback_mechanics=True ) # High-pressure elimination matches results = await elimination.run_elimination_tournament() Research Applications -------------------- Academic Research Platform ~~~~~~~~~~~~~~~~~~~~~~~~~~ **AI Research Infrastructure** .. code-block:: python from haive.games.research import AcademicResearchPlatform # Create research platform research_platform = AcademicResearchPlatform() # Design controlled experiments experiment = research_platform.design_experiment( research_question="Do LLMs exhibit consistent strategic preferences across game domains?", independent_variables=["provider", "game_type", "difficulty_level"], dependent_variables=["strategic_consistency", "adaptation_rate", "performance"], control_variables=["starting_conditions", "opponent_strength", "time_constraints"], sample_size=1000, statistical_power=0.8 ) # Execute research study research_results = await experiment.run_study() # Generate academic publication publication = research_platform.generate_publication(research_results) Commercial Benchmarking ~~~~~~~~~~~~~~~~~~~~~~ **Enterprise AI Evaluation** .. code-block:: python from haive.games.commercial import EnterpriseBenchmark # Enterprise AI evaluation platform enterprise = EnterpriseBenchmark() # Custom benchmarking for enterprise needs benchmark_suite = enterprise.create_custom_benchmark( use_cases=[ "strategic_decision_making", "negotiation_support", "competitive_analysis", "risk_assessment", "team_coordination" ], # Enterprise requirements security_level="high", compliance_requirements=["SOC2", "GDPR", "HIPAA"], performance_sla="99.9%", scalability_requirements="10000_concurrent" ) # Run enterprise evaluation enterprise_results = await benchmark_suite.run_enterprise_evaluation() Performance Optimization Research ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **AI System Optimization** .. code-block:: python from haive.games.optimization import PerformanceOptimizer # AI performance optimization research optimizer = PerformanceOptimizer() # Identify optimization opportunities optimization_study = optimizer.design_optimization_study( target_metrics=["win_rate", "strategic_quality", "efficiency"], optimization_parameters=[ "temperature_settings", "prompt_engineering", "context_management", "memory_utilization", "attention_mechanisms" ] ) # Run optimization research optimization_results = await optimization_study.run_optimization() # Generate optimization recommendations recommendations = optimizer.generate_optimization_guide() Tournament Infrastructure ------------------------ Automated Tournament Management ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Full Automation Pipeline** .. code-block:: python from haive.games.infrastructure import TournamentInfrastructure # Automated tournament infrastructure infrastructure = TournamentInfrastructure( cloud_provider="aws", auto_scaling=True, load_balancing=True, fault_tolerance="high", monitoring="comprehensive" ) # Deploy automated tournament tournament_deployment = infrastructure.deploy_tournament( scale="global", participants=10000, concurrent_matches=500, expected_duration="30_days" ) # Monitor tournament execution monitoring = infrastructure.monitor_tournament_health() Real-Time Analytics Dashboard ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Live Performance Monitoring** .. code-block:: python from haive.games.analytics import RealTimeAnalytics # Real-time tournament analytics analytics = RealTimeAnalytics() # Live performance dashboard dashboard = analytics.create_live_dashboard([ "current_match_status", "provider_performance_trends", "statistical_significance_updates", "emergent_behavior_detection", "strategy_adaptation_tracking", "competitive_intelligence_alerts" ]) # Stream live analytics analytics_stream = analytics.stream_live_analytics() Legacy and Future Integration ---------------------------- **Historical Performance Tracking** Comprehensive database of all tournament results for longitudinal analysis and trend identification. **Integration with AI Development** Direct integration with AI provider development pipelines for continuous benchmarking and improvement tracking. **Research Publication Pipeline** Automated generation of research publications and academic papers from tournament results. **Competitive Intelligence Feed** Real-time competitive intelligence for AI providers to understand market positioning and improvement opportunities. See Also -------- * :doc:`social_psychology_games` - Advanced behavioral AI analysis * :doc:`dynamic_configuration` - Real-time strategy and personality modification * :doc:`benchmark_framework` - Performance analysis and optimization * :doc:`multi_agent_coordination` - Multi-agent research applications