haive.games.risk.configurable_config ==================================== .. py:module:: haive.games.risk.configurable_config .. autoapi-nested-parse:: Configurable Risk configuration using the generic player agent system. This module provides configurable Risk game configurations that replace hardcoded LLM settings with dynamic, configurable player agents. Classes ------- .. autoapisummary:: haive.games.risk.configurable_config.ConfigurableRiskConfig Functions --------- .. autoapisummary:: haive.games.risk.configurable_config.create_advanced_risk_config haive.games.risk.configurable_config.create_budget_risk_config haive.games.risk.configurable_config.create_experimental_risk_config haive.games.risk.configurable_config.create_risk_config haive.games.risk.configurable_config.create_risk_config_from_example haive.games.risk.configurable_config.create_risk_config_from_player_configs haive.games.risk.configurable_config.get_example_config haive.games.risk.configurable_config.list_example_configurations Module Contents --------------- .. py:class:: ConfigurableRiskConfig(/, **data) Bases: :py:obj:`haive.games.risk.config.RiskConfig` Configurable Risk configuration with dynamic LLM selection. This configuration allows users to specify different LLMs for different roles in the Risk game, providing flexibility and avoiding hardcoded models. .. attribute:: player1_model Model for player1 (can be string or LLMConfig) .. attribute:: player2_model Model for player2 (can be string or LLMConfig) .. attribute:: player1_name Name for player1 .. attribute:: player2_name Name for player2 .. attribute:: example_config Optional example configuration name .. attribute:: player_configs Optional detailed player configurations .. attribute:: temperature Temperature for LLM generation .. attribute:: enable_analysis Whether to enable strategic analysis .. attribute:: visualize_game Whether to visualize game state .. attribute:: recursion_limit Python recursion limit for game execution Create a new model by parsing and validating input data from keyword arguments. Raises [`ValidationError`][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model. `self` is explicitly positional-only to allow `self` as a field name. .. py:method:: model_post_init(__context) Initialize engines after model creation. .. py:function:: create_advanced_risk_config(**kwargs) Create an advanced Risk configuration with powerful models. .. py:function:: create_budget_risk_config(**kwargs) Create a budget-friendly Risk configuration. .. py:function:: create_experimental_risk_config(**kwargs) Create an experimental Risk configuration with mixed providers. .. py:function:: create_risk_config(player1_model = 'gpt-4o', player2_model = 'claude-3-5-sonnet-20240620', **kwargs) Create a configurable Risk configuration with simple model specifications. :param player1_model: Model for player1 and analyzer :param player2_model: Model for player2 and analyzer :param \*\*kwargs: Additional configuration parameters :returns: Configured Risk game :rtype: ConfigurableRiskConfig .. rubric:: Examples >>> config = create_risk_config("gpt-4o", "claude-3-opus", temperature=0.5) >>> config = create_risk_config( ... "openai:gpt-4o", ... "anthropic:claude-3-5-sonnet-20240620", ... enable_analysis=True ... ) .. py:function:: create_risk_config_from_example(example_name, **kwargs) Create a configurable Risk configuration from a predefined example. :param example_name: Name of the example configuration :param \*\*kwargs: Additional configuration parameters to override :returns: Configured Risk game :rtype: ConfigurableRiskConfig Available examples: - "gpt_vs_claude": GPT vs Claude - "gpt_only": GPT for both players - "claude_only": Claude for both players - "budget": Cost-effective models - "mixed": Different provider per role - "advanced": High-powered models for strategic gameplay .. rubric:: Examples >>> config = create_risk_config_from_example("budget", enable_analysis=False) >>> config = create_risk_config_from_example("advanced", visualize_game=True) .. py:function:: create_risk_config_from_player_configs(player_configs, **kwargs) Create a configurable Risk configuration from detailed player configurations. :param player_configs: Dictionary mapping role names to player configurations :param \*\*kwargs: Additional configuration parameters :returns: Configured Risk game :rtype: ConfigurableRiskConfig Expected roles: - "player1_player": Player 1 configuration - "player2_player": Player 2 configuration - "player1_analyzer": Player 1 analyzer configuration - "player2_analyzer": Player 2 analyzer configuration .. rubric:: Examples >>> player_configs = { ... "player1_player": PlayerAgentConfig( ... llm_config="gpt-4o", ... temperature=0.7, ... player_name="Strategic General" ... ), ... "player2_player": PlayerAgentConfig( ... llm_config="claude-3-opus", ... temperature=0.3, ... player_name="Tactical Commander" ... ), ... "player1_analyzer": PlayerAgentConfig( ... llm_config="gpt-4o", ... temperature=0.2, ... player_name="Risk Strategist" ... ), ... "player2_analyzer": PlayerAgentConfig( ... llm_config="claude-3-opus", ... temperature=0.2, ... player_name="Risk Analyst" ... ), ... } >>> config = create_risk_config_from_player_configs(player_configs) .. py:function:: get_example_config(name) Get a predefined example configuration by name. :param name: Name of the example configuration :returns: The example configuration :rtype: ConfigurableRiskConfig :raises ValueError: If the example name is not found .. py:function:: list_example_configurations() List all available example configurations. :returns: Mapping of configuration names to descriptions :rtype: Dict[str, str]