haive.games.checkers.configurable_config ======================================== .. py:module:: haive.games.checkers.configurable_config .. autoapi-nested-parse:: Configurable Checkers configuration using the generic player agent system. This module provides configurable Checkers game configurations that replace hardcoded LLM settings with dynamic, configurable player agents. Classes ------- .. autoapisummary:: haive.games.checkers.configurable_config.ConfigurableCheckersConfig Functions --------- .. autoapisummary:: haive.games.checkers.configurable_config.create_budget_checkers_config haive.games.checkers.configurable_config.create_checkers_config haive.games.checkers.configurable_config.create_checkers_config_from_example haive.games.checkers.configurable_config.create_checkers_config_from_player_configs haive.games.checkers.configurable_config.create_competitive_checkers_config haive.games.checkers.configurable_config.create_experimental_checkers_config haive.games.checkers.configurable_config.get_example_config haive.games.checkers.configurable_config.list_example_configurations Module Contents --------------- .. py:class:: ConfigurableCheckersConfig Bases: :py:obj:`haive.games.checkers.config.CheckersAgentConfig` Configurable Checkers configuration with dynamic LLM selection. This configuration allows users to specify different LLMs for different roles in the Checkers game, providing flexibility and avoiding hardcoded models. .. attribute:: red_model Model for red player (can be string or LLMConfig) .. attribute:: black_model Model for black player (can be string or LLMConfig) .. attribute:: red_player_name Name for the red player .. attribute:: black_player_name Name for the black player .. attribute:: example_config Optional example configuration name .. attribute:: player_configs Optional detailed player configurations .. attribute:: temperature Temperature for LLM generation .. attribute:: max_moves Maximum number of moves before draw .. attribute:: enable_analysis Whether to enable position analysis .. attribute:: recursion_limit Python recursion limit for game execution .. py:method:: model_post_init(__context) Initialize engines after model creation. .. py:function:: create_budget_checkers_config(**kwargs) Create a budget-friendly Checkers configuration. .. py:function:: create_checkers_config(red_model = 'gpt-4o', black_model = 'claude-3-5-sonnet-20240620', **kwargs) Create a configurable Checkers configuration with simple model specifications. :param red_model: Model for red player and analyzer :param black_model: Model for black player and analyzer :param \*\*kwargs: Additional configuration parameters :returns: Configured Checkers game :rtype: ConfigurableCheckersConfig .. rubric:: Examples >>> config = create_checkers_config("gpt-4o", "claude-3-opus", temperature=0.5) >>> config = create_checkers_config( ... "openai:gpt-4o", ... "anthropic:claude-3-5-sonnet-20240620", ... max_moves=150 ... ) .. py:function:: create_checkers_config_from_example(example_name, **kwargs) Create a configurable Checkers configuration from a predefined example. :param example_name: Name of the example configuration :param \*\*kwargs: Additional configuration parameters to override :returns: Configured Checkers game :rtype: ConfigurableCheckersConfig Available examples: - "gpt_vs_claude": GPT-4 vs Claude - "gpt_only": GPT-4 for both players - "claude_only": Claude for both players - "budget": Cost-effective models - "mixed": Different provider per role - "checkers_masters": High-powered models for competitive play .. rubric:: Examples >>> config = create_checkers_config_from_example("budget", max_moves=80) >>> config = create_checkers_config_from_example("gpt_vs_claude", enable_analysis=False) .. py:function:: create_checkers_config_from_player_configs(player_configs, **kwargs) Create a configurable Checkers configuration from detailed player configurations. :param player_configs: Dictionary mapping role names to player configurations :param \*\*kwargs: Additional configuration parameters :returns: Configured Checkers game :rtype: ConfigurableCheckersConfig Expected roles: - "red_player": Red player configuration - "black_player": Black player configuration - "red_analyzer": Red analyzer configuration - "black_analyzer": Black analyzer configuration .. rubric:: Examples >>> player_configs = { ... "red_player": PlayerAgentConfig( ... llm_config="gpt-4o", ... temperature=0.7, ... player_name="Aggressive Red" ... ), ... "black_player": PlayerAgentConfig( ... llm_config="claude-3-opus", ... temperature=0.3, ... player_name="Strategic Black" ... ), ... "red_analyzer": PlayerAgentConfig( ... llm_config="gpt-4o", ... temperature=0.2, ... player_name="Red Analyst" ... ), ... "black_analyzer": PlayerAgentConfig( ... llm_config="claude-3-opus", ... temperature=0.2, ... player_name="Black Analyst" ... ), ... } >>> config = create_checkers_config_from_player_configs(player_configs) .. py:function:: create_competitive_checkers_config(**kwargs) Create a competitive Checkers configuration with powerful models. .. py:function:: create_experimental_checkers_config(**kwargs) Create an experimental Checkers configuration with mixed providers. .. py:function:: get_example_config(name) Get a predefined example configuration by name. :param name: Name of the example configuration :returns: The example configuration :rtype: ConfigurableCheckersConfig :raises ValueError: If the example name is not found .. py:function:: list_example_configurations() List all available example configurations. :returns: Mapping of configuration names to descriptions :rtype: Dict[str, str]