haive.core.engine.document ========================== .. py:module:: haive.core.engine.document .. autoapi-nested-parse:: 📚 Document Engine - Intelligent Document Processing Revolution **THE OMNIPOTENT DOCUMENT CONSCIOUSNESS THAT UNDERSTANDS EVERYTHING** Welcome to the Document Engine - the revolutionary document intelligence platform that transforms static document processing into a living, adaptive understanding system. This isn't just another document loader; it's a sophisticated document consciousness that reads, understands, processes, and learns from every document it encounters, creating a seamless bridge between raw information and AI intelligence. ⚡ REVOLUTIONARY DOCUMENT INTELLIGENCE ------------------------------------ The Document Engine represents a paradigm shift from traditional document processing to **intelligent, adaptive document understanding systems** that evolve with content: **🧠 Universal Document Understanding**: Processes any document type with intelligent format detection **🔄 Adaptive Processing Strategies**: Dynamic chunking and processing based on content analysis **⚡ Intelligent Source Detection**: AI-powered identification of optimal loading strategies **📊 Context-Aware Chunking**: Smart content segmentation that preserves semantic meaning **🎯 Multi-Source Intelligence**: Seamless processing from files, URLs, databases, and cloud storage 🌟 CORE DOCUMENT INNOVATIONS --------------------------- **1. Intelligent Document Engine** 🚀 Revolutionary document processing that thinks and adapts: .. rubric:: Examples >>> from haive.core.engine.document import DocumentEngine, DocumentEngineConfig >>> from haive.core.engine.document import ChunkingStrategy, ProcessingStrategy >>> >>> # Create intelligent document engine with learning capabilities >>> engine = DocumentEngine( >>> config=DocumentEngineConfig( >>> name="intelligent_processor", >>> chunking_strategy=ChunkingStrategy.SEMANTIC_AWARE, >>> processing_strategy=ProcessingStrategy.ADAPTIVE, >>> learning_enabled=True, >>> context_preservation=True >>> ) >>> ) >>> >>> # Engine automatically optimizes processing based on content >>> engine.enable_content_learning( >>> metrics=["chunk_quality", "semantic_coherence", "processing_speed"], >>> optimization_target="content_understanding" >>> ) >>> >>> # Process documents with intelligent adaptation >>> result = engine.invoke([ >>> "path/to/technical_manual.pdf", >>> "https://api.docs.example.com/v1/guide", >>> {"database": "mongodb://localhost", "collection": "documents"} >>> ]) >>> >>> # Engine learns optimal processing strategies for each content type >>> processing_insights = engine.get_processing_insights() >>> content_analysis = engine.get_content_analysis_report() >>> >>> # Apply learned optimizations automatically >>> engine.apply_learned_optimizations( >>> confidence_threshold=0.85, >>> preserve_quality=True >>> ) For complete examples and advanced patterns, see the documentation. Submodules ---------- .. toctree:: :maxdepth: 1 /autoapi/haive/core/engine/document/agents/index /autoapi/haive/core/engine/document/config/index /autoapi/haive/core/engine/document/engine/index /autoapi/haive/core/engine/document/factory/index /autoapi/haive/core/engine/document/loaders/index /autoapi/haive/core/engine/document/path_analysis/index /autoapi/haive/core/engine/document/processors/index /autoapi/haive/core/engine/document/splitters/index /autoapi/haive/core/engine/document/transformers/index /autoapi/haive/core/engine/document/types/index /autoapi/haive/core/engine/document/universal_loader/index